期刊文献+

中长期电力负荷模糊聚类预测改进算法 被引量:2

Improved Fuzzy Clustering Forecast Algorithm for Middle and Long Term Electric Power Load
下载PDF
导出
摘要 针对传统的中长期模糊聚类预测算法自变量权重选择不合理、截水平集合元素不全面、相关因子计算方法单一等缺陷,提出改进的预测算法。该算法利用关联度分析计算自变量权重,通过建立相关因子计算方法库,按照相对传递总偏差最小原则选择最佳相似矩阵进行聚类,以等价矩阵所有元素的去重集合作为截水平集合求最佳聚类。实验结果证明该算法可提高预测的准确性。 Classical fuzzy clustering algorithm has some drawbacks including that the computing of independent variable weights is unreasonable, the set of horizontal section members is slurred, the computational methods of correlation factor are single and so on. In order to solve the problems above, this paper proposes a new algorithm named improved fuzzy clustering algorithm. It uses association analysis to compute the independent variable weights, sets up a method warehouse and uses it to calculate the correlation factors, and selects distinct members of the equivalent matrix as the set of horizontal section. Experimental result demonstrates that the new algorithm increases the accuracy of forecast.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第15期184-186,共3页 Computer Engineering
关键词 模糊聚类 相关因子 相似矩阵 关联度分析 中长期电力负荷预测 fuzzy clustering correlation factor similar matric association analysis forecast of middle and long term electric power load
  • 相关文献

参考文献6

二级参考文献12

共引文献46

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部