期刊文献+

微粒群惯性权值的改进及收敛性分析

The Improvement and Analysis of Convergence on Inertia Weight of PSO
下载PDF
导出
摘要 微粒群算法是相对较新颖的优化算法,已成功应用于许多优化问题,但该算法容易陷入局部极值。惯性权值的选择方案的好坏,起到举足轻重的作用,本文提出三种惯性权值的改进方案。通过对4种常用测试函数进行测试,结果表明这些改进方案比经典惯性权值选择方案具有更低的平均最好适应值,快速收敛到全局最优解,优化效率明显提高。 PSO algorithm is a relatively new optimization algorithm and has been successfully used in many optimization problems,but the algorithm is vulnerable to local extreme.The paper proposed three improvement ways based on the selection of inertia weight scheme.The test results proved the improvement ways shows that the average of the best fitness of the algorithm is lower than classic inertia weight.The ways can rapidly converge to the global optimal solution;the optimization efficiency is increased significantly.
出处 《北京电子科技学院学报》 2009年第4期55-61,共7页 Journal of Beijing Electronic Science And Technology Institute
关键词 PSO 优化 群智能 微粒群 惯性权值 PSO optimization swarm intelligence multi-particle swarms inertia weight
  • 相关文献

参考文献10

二级参考文献30

  • 1王芳,邱玉辉.一种引入轮盘赌选择算子的混合粒子群算法[J].西南师范大学学报(自然科学版),2006,31(3):93-96. 被引量:15
  • 2段海滨,王道波,于秀芬.几种新型仿生优化算法的比较研究[J].计算机仿真,2007,24(3):169-172. 被引量:20
  • 3SHI Y H, EBERHART R. A modified particle swarm optimizer [ C]//Proc of I EEE International Conference on Evolutionary Computation. Piscataway, N J: IEEE Press, 1998:69-73. 被引量:1
  • 4KENNEDY J. The particle swarm: social adaptation of knowledge [ C ]//Proc of IEEE International Conference on Evolutionary Computation. Piscataway, NJ: IEEE Service Center, 1997:303-308. 被引量:1
  • 5ANGELINE P J. Evolutionary optimization versus particle swarm optimization : philosophy and performance difference [ C ]//Proc of the 7th Annual Conference on Evolutionary Programming. Gemany: Springer, 1998:601-610. 被引量:1
  • 6Shi Y,Eberhart R C.A modified particle swarm optimizer[C].Piscataway,USA:IEEE Congr Evol Comput,1998:69-73. 被引量:1
  • 7Shi Y,Eberhart R C.Particle swarm optimization with fuzzy adaptive inertia weight[C].Indianapolis,USA:Proe Workshop Particle Swarm Optimization,2001:101-106. 被引量:1
  • 8Ratnaweera A,Haigamuge S,Watson H.Self-organizing hierarchical particle swarm optimizer with time varying accelerating coefficients[J].IEEE Trans Evol Comput,2004,8(6):240-255. 被引量:1
  • 9Clerc M,Kennedy J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J].IEEE Trans Evol Comput,2002,6(1):58-73. 被引量:1
  • 10Mendes R,Kennedy J,Neves J.The fully informed particle swarm:Simpler,maybe better[J].IEEE Trans Evol Comput,2004,8(6):204-210. 被引量:1

共引文献322

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部