期刊文献+

粒子群优化算法中惯性权值调整的一种新策略 被引量:14

A New Strategy of Inertia Weight Adjustment for Particle Swarm Optimization
下载PDF
导出
摘要 惯性权值的设置对粒子群优化(PSO)算法的性能起着关键作用,现有的基于惯性权值的改进算法提高了算法的性能,但都把惯性权值作为全局参数,很难控制算法的搜索能力。本文在充分分析惯性权值的关键作用基础上给出一种新的惯性权值调整策略及其相应的粒子群优化算法,使用不同的惯性权值更新同一代种群。测试结果表明,新算法提高了算法的性能,并具有更快的收敛速度和跳出局部最优的能力。 The setting of inertia weight plays a key role in the performance of PSO, so many improved PSO algorithms based on inertia weights are proposed. In these improved algorithms, the performance of the algorithm is really improved, but the same inertia weight is used to update the velocity of particles in the whole population and it is hard to control the search ability of PSO. A good investigation of the key role of the setting of the inertia weights is made and a new strategy of inertia weight a djustment and the corresponding PSO are proposed based on the investigation. In the new PSO, different inertia weights are used in updating the particle swarm in the same generation. The experimental results illustrate that the new PSO algorithm improves the performance of PSO,and it also speeds up the velocity of the PSO convergence and has the ability to escape from the local minimum.
出处 《计算机工程与科学》 CSCD 2007年第1期70-72,75,共4页 Computer Engineering & Science
基金 福建省自然科学基金资助项目(A0410010) 福建省科技厅重点项目(2004H007) 福建省教育厅重点项目(JA04155)
关键词 粒子群优化(PSO) 优化算法 惯性权值 particle swarm optimization (PSO) optimization algorithm inertia weight
  • 相关文献

参考文献8

  • 1Eberhart R C,Kennedy J.A New Optimizer Using Particles Swarm Theory[A].Proc 6th Int'l Symp on Micro Machine and Human Science[C].1995.39-43. 被引量:1
  • 2Shi Y H,Eberhart R C.A Modified Particle Swarm Optimizer[A].IEEE Int'l Conf of Evolutionary Computation[C].1998.69-73. 被引量:1
  • 3Shi Y H,Eberhart R C.Parameter Selection in Particle Swarm Optimization[A].Eiben A,Porto V,Saravanan N,et al,eds.Evolutionary Programming Ⅶ[M].San Diego,California:Springer-Verlag,1998.591-600. 被引量:1
  • 4Shi Y H,Eberhart R C.Fuzzy Adaptive Particle Swarm Optimization[A].Proc of the Congress on Evolutionary Computation[C].2001.101-106. 被引量:1
  • 5Eberhart R C,Shi Y H.Tracking and Optimizing Dynamic Systems with Particle Swarms[A].Proc of the Congress on Evolutionary Computation[C].2001.94-97. 被引量:1
  • 6Angeline P J.Using Selection to Improve Particle Swarm Optimization[A].Proc of IEEE Congress on Evolutionary Computation[C].1998.84-89. 被引量:1
  • 7Van den Bergh F,Engelbrecht A P.Using Neighborhoods with the Guaranteed Convergence PSO[A].Proc of the IEEE Swarm Intelligence Symp[C].2003.235-242. 被引量:1
  • 8Van Den Bergh F,Engelbrecht A P.Effects of Swarm Size on Cooperative Particle Swarm Optimizers[A].Proc of the Genetic and Evolutionary Computation Conf[C].2001.892-899. 被引量:1

同被引文献160

引证文献14

二级引证文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部