期刊文献+

高边界精度和抗噪的均值漂移图像分割算法 被引量:2

Image segmentation algorithm based on mean shift with high boundary precision and anti-noise performance
下载PDF
导出
摘要 Meanshift(均值漂移)算法核函数窗口的带宽目前仍没有一个统一的确定标准。对整体图像根据Canny算子提取的边缘方向信息分成3类子图,一类是规则边缘子图,由规则边缘像素组成;第2类为非规则边缘子图,由边界方向变化剧烈的边缘像素组成;第3类是非边缘子图,由区域内部平坦区域和噪声区域组成。规则边缘子图和非边缘子图采用大窗口使区域内部更为平滑,并使噪声区域达到更高的抗噪性能,非规则边缘子图用小窗口可保持更高的边界精度。实验采用金属断口图像进行分割,结果表明,针对不同子图采用不同核函数带宽的方法使分割后的金属断口图像边界更准确,抗噪性能也更强。 There is not an uniform standard of determining the bandwidth of window of kernel function for mean shift. Images are divided into three sub-images according to the orientation information of edges detected by canny operator. Regular edge sub-image contained regular edge pixels. Nonregular edge sub-image is composed of edge pixels whose orientation changed sharply. Non-edge sub-image consisted of inner pixels in smooth region and noise pixels. The bandwidth of kernel function window in regular edge sub-image and nonedge sub-image is large in order to smooth inner region and improve anti-noise performance. The bandwidth of kernel function window in nonregular edge sub-image is small so that the segmented image had more accurate boundary. The experimental results show that the method of selection bandwidth of kernel function window in different sub-image is effective to metal fracture images for more accurate boundary and better anti-noise performance.
出处 《计算机工程与设计》 CSCD 北大核心 2010年第1期145-148,152,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(60475002) 航空科学基金项目(2008ZD56003)
关键词 均值漂移 子图 边界精度 抗噪性能 图像分割 金属断口 mean shifl sub-image boandaryprecision anti-noiseperformance image segmentation metal fracture
  • 相关文献

参考文献12

  • 1Dosselmann R,Xue Dong Yang.Mean shift point-mass level-of- detail[C].Canadian Conference on Electrical and Computer Engineering,2008:37-42. 被引量:1
  • 2Dosselmann R, Xue Dong Yang.Mean shift particle-based texture granularity[C].Instrumentation and Measurement Technology Conference Proceedings,2008:101-106. 被引量:1
  • 3Liu Yulan,Peng Silong.A new motion detection algorithm based on snake and mean shift[C].Congress on Image and Signal Processing,2008:140-144. 被引量:1
  • 4Zhou Huiyu,Gerald Schaefer, Shi Chunmei.A mean shift based fuzzy c-means algorithm for image segmentation[C].30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2008:3091-3094. 被引量:1
  • 5Jimenez-Alaniz J R, Pohl-Alfaro M, Medina-Banuelos V, et al. Segmenting brain MRI using adaptive mean shift[C].28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006:3114-3117. 被引量:1
  • 6Yang Xuan,Pei Jihong.Robust multimodal medical image elastic registration using RPM and mean shift [C]. First International Workshop on Intelligent Networks and Intelligent Systems, 2008:441-444. 被引量:1
  • 7连洁,韩传久.基于Mean Shift的红外目标自动跟踪方法[J].微计算机信息,2008,24(4):279-281. 被引量:3
  • 8夏长俊,李翊,顾文锦,张沛帆.基于Canny边缘检测的Mean-Shift跟踪核窗宽确定方法[J].海军航空工程学院学报,2008,23(3):308-313. 被引量:3
  • 9宋新,罗军,王鲁平,沈振康.基于Mean Shift聚类的边缘检测方法[J].弹箭与制导学报,2007,27(1):366-368. 被引量:8
  • 10Huang Zan.A median filter based on judging impulse noise by statistic and adaptive threshold[C].Congress on Image and Signal Processing,2008:207-210. 被引量:1

二级参考文献22

共引文献11

同被引文献20

  • 1NING Jinfeng, ZHANG Lei. Interactive image segmentation by maximal similarity based region merging [J ]. Pattern Recognition, 2010, 43 (2)7 445-456. 被引量:1
  • 2Mirandaa PAV, Facaoa AX, Udupa JK. Synergistic arc- weight estimation for interactive image segmentation using graphs [J]. Computer Vision and Image Understanding, 2011, 114 (1): 85-99. 被引量:1
  • 3Katkovnik V, Foi A, Egiazarian K, et al. From local kenerl to nonlocal multiple-model image denoising [J]. International Journal of Computer Vision, 2010, 86 (1)11-32. 被引量:1
  • 4HE Kaiming, SUN Jian, TANG Xiaoou. Guided image filte- ring [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (6): 1397-1409. 被引量:1
  • 5Vincent L, Soille Po Watersheds in digital spaces: an efficient algorithm based on immersion simulations [J]. IEEE Tran- sactions on Pattern Analysis and Machine Intelligence, 1991, 13 (6): 583-598. 被引量:1
  • 6L Xu, Lu C, Xu Y, et al. Image smoothing via 10 gradient minimization [J]. Proc ACM Siggraph Asia, 2011, 174.. 1-12. 被引量:1
  • 7Adams A, Gelfand N, Dolson J, et al. Gaussian KD-trees for fast high-dimensional filtering [J]." Proc ACM Siggraph, 2009, 21: 1-12. 被引量:1
  • 8FENG Xiaojun, Allchach JP. Segmented image interpolation using edge direction and texture synthsis [C] //15th IEEE In- ternational Conference on Image Processing, 2008 881-884. 被引量:1
  • 9TANG Shiwei, ZU Guofeng, NIE Mingming. An improved image enhancement algorithm based on fuzzy sets [C] //In- ternational Forum on Information Technology and Applica- tions, 2010: 197-199. 被引量:1
  • 10王斌,高新波.基于水平集接力的图像自动分割方法[J].软件学报,2009,20(5):1185-1193. 被引量:16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部