期刊文献+

基于灰度共生矩阵的金属断口图像的分类研究 被引量:12

Research of metal fracture image classification based on GLCM
下载PDF
导出
摘要 灰度共生矩阵在图像的纹理分析中是一个很重要的方法,但是其参数的选择现在还没有确定的方法。论文计算了灰度共生矩阵的13个特征参数,根据不同步长、不同灰度压缩级时特征值的变化曲线确定步长和灰度级别,然后根据相关系数分析选择其中的7个特征,利用加权欧式距离分类器将金属断口图像分为4类。与常用的5个特征进行分类相比,根据该方法选择的7个特征分类效果明显更好。 GLCM is an important method in the texture analysis of image,but there isn't decided means to ascertain it's parameters until now.Thirteen parameters of GLCM are computed in this paper and then distance and gray level are selected according to feature's mutative curve of different distances and gray levels.At last,seven features are selected according to coefficient of correlation.Then weighted Euclidean distance classifier is designed to classify metal fracture image.Compared with five features in common use,the classification results using the seven features selected according to this method is much better.
作者 苏静 黎明
出处 《计算机工程与应用》 CSCD 北大核心 2008年第9期223-225,234,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60475002) 无损检测技术教育部重点实验室开放基金
关键词 金属断口 纹理分析 BP神经网络分类器 灰度共生矩阵 metal fracture texture analysis BP neural network classifier Gray Level Cooceurrenee Matrix(GLCM)
  • 相关文献

参考文献5

二级参考文献20

  • 1颜云辉,王德俊,黄雨华,王清昊,王彤波.疲劳断口分析的Fourier变换方法[J].金属学报,1997,33(4):386-386. 被引量:5
  • 2李金宗,模式识别导论,1994年 被引量:1
  • 3Chang T,IEEE Trans Image Processing,1993年,2卷,4期,429页 被引量:1
  • 4闻新 周露.MATLAB神经网络应用设计[M].北京:科学出版社,2001.. 被引量:149
  • 5J A Modestino,J Zhang.A markov random field model based approach to image interpretation[J].IEEE Tran On Pattern Analysis and Machine Intelligence,1992,14(6):606-615. 被引量:1
  • 6N Kamath,K.Sunil Kumar,U B Desai.Joint segmentation and image interpretation using hidden Markov models[A].Proc of the Int Conf on Pattern Recognition[C].Brisbane,Australia,1998,2:1840-1842. 被引量:1
  • 7Belhadj Ziad,Bouhlel Nizar,Sevestre Ghalila Sylvie,Boussema Mohamed Rached.Heterogeneous SAR Texture Characterization By Means Of Markov Random Fields[A].IEEE 2000 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS′2000)[C].Honolulu Hawaii,2000,2:579-581. 被引量:1
  • 8Rupert D Paget.Nonparametric Markov Random Field Models for Natural Texture Images[D].The University of Queensland,1999. 被引量:1
  • 9S C Liew,H Lim,L K Kwoh,G K Tay.Texture analysis of SAR images[A].IEEE 1995 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS′1995)[C].Firenze,Italy,1995,2:1412-1414. 被引量:1
  • 10Robert M Haralick,K Shanmugam,Its′hak Dinstein.Texture features for image classification[J].IEEE Trans on Systems,Man and Cybernetics,1973,3(6):610-621. 被引量:1

共引文献279

同被引文献110

引证文献12

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部