期刊文献+

Selfinjective Koszul Algebras of Finite Complexity 被引量:6

Selfinjective Koszul Algebras of Finite Complexity
原文传递
导出
摘要 In this paper, we study selfinjective Koszul algebras of finite complexity. We prove that the complexity is a nonnegative integer when it is finite; and that the category Yt of modules with complexity less or equal to t, is resolving and coresolving. We show that for each 0 ≤ 1 ≤ m there exist a family of modules of complexity 1 parameterized by G(l, m), the Grassmannian of l-dimensional subspaces of an m-dimensional vector space V, for the exterior algebra of V. Using complexity, we also give a new approach to the representation theory of a tame symmetric algebra with vanishing radical cube over an algebraically closed field of characteristic 0, via skew group algebra of a finite subgroup of SL(2, C) over the exterior algebra of a 2-dimensional vector space. In this paper, we study selfinjective Koszul algebras of finite complexity. We prove that the complexity is a nonnegative integer when it is finite; and that the category Yt of modules with complexity less or equal to t, is resolving and coresolving. We show that for each 0 ≤ 1 ≤ m there exist a family of modules of complexity 1 parameterized by G(l, m), the Grassmannian of l-dimensional subspaces of an m-dimensional vector space V, for the exterior algebra of V. Using complexity, we also give a new approach to the representation theory of a tame symmetric algebra with vanishing radical cube over an algebraically closed field of characteristic 0, via skew group algebra of a finite subgroup of SL(2, C) over the exterior algebra of a 2-dimensional vector space.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第12期2179-2198,共20页 数学学报(英文版)
基金 Supported by NSFC #10671061 SRFDP #200505042004 the Cultivation Fund of the Key Scientific and Technical Innovation Project #21000115 of the Ministry of Education of China
关键词 selfinjective Koszul algebra COMPLEXITY skew group algebra tame symmetric algebra selfinjective Koszul algebra, complexity, skew group algebra, tame symmetric algebra
  • 相关文献

参考文献25

  • 1Webb, P. J.: The Auslander-Reiten quiver of a finite group. Math. Z., 179, 97-121 (1982). 被引量:1
  • 2Guo, J. Y., Wu Q.: Loewy matrix, Koszul cone and applications. Comm. Algebra, 28(2), 925-941 (2000). 被引量:1
  • 3Auslander, M.: Rational singularities and almost splitting sequences. Trans. Amer. Math. Soc., 293, 511-531 (1986). 被引量:1
  • 4Auslander, M., Reiten, I.: McKay quivers and extended Dynkin diagrams. Trans. Amer. Math. Soc., 293, 293-301 (1986). 被引量:1
  • 5Crawley-Boevey, W., Holland M. P.: Noncommutative deformations of Kleinian singularities. Duke J. Math., 92, 251-289 (1998). 被引量:1
  • 6Guo, J. Y., Martinez-Villa, R.: Algebra pairs associated to McKay quivers. Comm. Algebra, 30(2), 1017 1032 (2002). 被引量:1
  • 7Tang, A.: A note on the stable equivalence conjecture. Comm. Algebra, 24(9), 2793-2809 (1996). 被引量:1
  • 8Auslander, M., Reiten, I.: κ-Gorenstein algebras and syzygy modules. J. Pure Appl. Algebras, 92, 1-27 (1994). 被引量:1
  • 9Auslander, M., Reiten, I.: Applications of contravariantly finite subcategories. Adv. Math., 86 111-152 (1991). 被引量:1
  • 10Martinez-Villa, R.: Graded, selfinjective and Koszul algebras. J. Algebra, 215(1), 34-72 (1999). 被引量:1

同被引文献7

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部