摘要
研究了把广义Grassmann流形看作V=∧^(m+1)L^(n+1)中的广义单位球面S^(N-1)上的嵌入子流形的极小性.同时讨论了双曲空间中的子流形的广义Gauss映照的调和性.
In this paper, the generalized Grassmann manifolds are viewed as
the submanifold imbedding into the generalized unit sphere in the space V = (?) Its minimality and the harmonicity of generalized Gauss map are discussed.
出处
《北方工业大学学报》
1993年第1期20-25,共6页
Journal of North China University of Technology
关键词
格拉斯曼流形
子流形
极小性
Grassmann manifold, generalized manifolds submanifolds/ harmonic mappings, generalized Gauss mappings, flat normal hundles