期刊文献+

Sobolev型方程各向异性Carey元解的高精度分析 被引量:17

Higher Accuracy Analysis for the Anisotropic Carey Element Solution to Sobolev Type Equation
下载PDF
导出
摘要 利用积分恒等式和插值后处理技术,本文在各向异性网格上对Sobolev型方程的Carey非协调有限元解进行高精度算法分析。首先,根据Carey元的特性,即其有限元解的线性插值和线性元解相同,我们构造插值后处理算子,得到了有限元解的超逼近性质和整体超收敛及后验误差估计。接着,根据误差渐近展开式,运用外推方法,进一步得到了具有四阶精度的近似解。 By using the integral identities and the interpolation postprocessing technique, the higher accuracy approximation of the anisotropic nonconforming Carey element for solving the Sobolev type equations is investigated. Firstly, the interpolation operator is constructed, the superclose~ global superconvergence and posteriori error estimate are obtained with the help of the distinct property of Carey elements, i.e., the linear interpolation of the solution for Carey elements is equal to the solution for linear triangular element. Secondly, by virtue of the extrapolation method, the accuracy of the related approximate solution with fourth order is derived through the asymptotic error expansion.
出处 《工程数学学报》 CSCD 北大核心 2009年第6期1021-1026,共6页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10671184) 河南工程学院博士基金项目
关键词 SOBOLEV型方程 Carey元 高精度分析 Sobolev type equations Carey element higher accuracy
  • 相关文献

参考文献9

二级参考文献31

  • 1石东洋,毛士鹏,陈绍春.问题变分不等式的一类各向异性Crouzeix-Raviart型有限元逼近[J].计算数学,2005,27(1):45-54. 被引量:11
  • 2朱起定 林群.有限元超收敛理论[M].湖南科学技术出版社,1989.. 被引量:11
  • 3Ciarlet P G.The Finite Element Method for Ellptic Problem[M].North-Holland,Amsterdam,1978 被引量:1
  • 4Falk R.Error estimate for the approximation of a class of varitional inequalities[J].Mathematics of Computation,1974,28:963-971 被引量:1
  • 5Brezzi F,Hager W W,Raviart P A.Error estimates for the finite elment solution of varitional inequalities[J].Numerische Mathematik,1977,(28):431-443 被引量:1
  • 6Brezzi F,Sacchi GF.A finite element approximation of varitional inequality related to hydraulics[J].Calcolo,1976,13(3):259-273 被引量:1
  • 7Zienisek A,Vanmaele M.The interpolation theorem for narraw quadrilateral isotropic metric finite elements[J].Numerische Mathematik,1995,72:123-141 被引量:1
  • 8Apel Th,Dobrowolski M.Anisotropic interpolation with applications to the finite element method[J].Computing,1992,47(3):277-293 被引量:1
  • 9Apel Th.Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements[J].Computing,1998,60:157-174 被引量:1
  • 10Apel Th.Anisotropic Finite Elements:Local Estimates and Applications[M].B.G.Teubner Stuttgart,Leipzig,1999 被引量:1

共引文献109

同被引文献107

引证文献17

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部