期刊文献+

基于小波包变换的癫痫脑电信号特征提取 被引量:9

Feature extraction of epileptic EEG signals based on wavelet package transform
下载PDF
导出
摘要 为了有效识别癫痫脑电信号,提出了一种适合于非平稳脑电信号的特征提取方法。以临床采集的包含癫痫发作期的5组500个EEG公共数据为样本,选择了具有任意多分辨分解特性的小波包变换,对信号进行多尺度分解,并提取了各级节点的小波包系数。将小波包系数能量作为特征值,构建了特征向量并输入到BP神经网络分类器中进行自动识别。实验结果表明,该算法的识别率达到了91.5%。 A method of feature extraction in non-stable signals is put forward to improve the correct classification rates of epileptic EEG. The Samples are composed of five hundred EEG Public datum which include the Period of epileptic seizures. The authors select the wavelet packets that have the trait of arbitrary distinction and decomposition. Character vectors which reflect different state of EEG signals are extracted from different frequency segments with the technology of wavelet packet decomposition, and taking them input neural network as samples to establish the model of BP neural network. Extensive experimental results demonstrate that the classification accuracy of the proposed feature extraction method for experiment EEG signals reach 91.5%.
出处 《电子测量技术》 2009年第10期36-39,共4页 Electronic Measurement Technology
关键词 癫痫脑电 小波包 特征提取 BP神经网络 epileptic EEG wavelet package feature extraction BP neural network
  • 相关文献

参考文献7

二级参考文献85

共引文献101

同被引文献108

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部