期刊文献+

时间-空间分数阶对流扩散方程的有限差分解法(英文) 被引量:4

Finite Difference Methods for Space-time Fractional Convection-diffusion Equation
下载PDF
导出
摘要 通过对空间分数阶导数采用修正的Grunwald有限差分逼近,给出了数值求解时间-空间分数阶导数对流扩散方程的一种隐式差分格式.证明了格式的兼容性、无条件稳定性及一阶收敛性,并给出了数值算例. An implicit difference scheme is presented for a space-time fractional convection-diffusion equation. The equation is obtained from the classical integer order convection-diffusion equations with fractional order derivatives. First-order consistency, unconditional stability, and (therefore) first-order convergence of the method are proved using a novel shifted version of the classical Gruenwald finite difference approximation for the fractional derivatives. A numerical example with known exact solution is also presented, and the behavior of the error is examined to verify the order of convergence.
作者 张阳 于志玲
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期51-56,共6页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 the National Natural Science Foundations of China(103016)
关键词 对流扩散方程 分数阶导数 隐式差分格式 稳定性 收敛性 convection-diffusion equation fractional order derivative implicit difference scheme stability convergence
  • 相关文献

参考文献6

  • 1Meerschaert M M, Benson D A, Seheffler H P, et al. Governing equations and solutions of anomalous random walk limits[J]. Phys Rev, 2002, E66: 102-105. 被引量:1
  • 2Meerschaert M M, Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations [J]. J Comput Appl Math, 2004, 172: 65-77. 被引量:1
  • 3Podlubny I. Fractional Differential Equations[M]. New York: Academic Press, 1999. 被引量:1
  • 4Langlands T A M, Henry B I. The accuracy and stability of an implicit solution method for the fractional diffusion equation[J]. J Comput Phys, 2005, 205: 719-736. 被引量:1
  • 5Meerschaert M M, Benson D A, Scheffler H P, et al. Stochastic solution of space-time fractional diffusion equations [J]. Phys Rev, 2002, E65:1 103-1 106. 被引量:1
  • 6Meerschaert M M, Scheffler H P, Tadjeran C. Finite difference method for two dimensional fractional dispersion equation[J]. J Comput Phys, 2006, 211: 249-261. 被引量:1

同被引文献13

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部