期刊文献+

高维非齐次时间分数阶电报方程的基本解 被引量:3

Fundamental Solutions of the Non-Homogeneous Time Fractional Telegraph Equation in High Dimensions
下载PDF
导出
摘要 分数阶微分方程在许多应用科学上比整数阶微分方程更能准确地模拟自然现象.考虑了高维非齐次时间分数阶电报方程的初边值问题,使用分离变量法导出了Dirichlet边界条件下高维非齐次时间分数阶电报方程的解析解,并给出了四维非齐次时间分数阶电报方程的解析解表达式. Many phenomena can be more correctly simulate by fractional differential equations contrasting with integer differential equations in most of applied sciences. In this paper,a non-homogeneous time fractional telegraph equation with initial-boundary value problem in high dimensions is considered,the method of separating variables is effectively implemented for solving the non-homogeneous time fractional telegraph equation with Dirichlet initial-boundary value problem in high dimensions. Finally,an analytical solution to non-homogeneous time fractional telegraph equations with Dirichlet initial-boundary value problem in four dimensions is obtained.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2015年第1期77-83,共7页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10671132和60673192) 四川省应用基础基金(2013JY0125)资助项目
关键词 电报方程 分数阶 分离变量法 CAPUTO导数 DIRICHLET边界条件 telegraph equation fractional method of separating variables Caputo derivative Dirichlet boundary conditions
  • 相关文献

参考文献8

二级参考文献50

共引文献31

同被引文献44

  • 1马亮亮.一种时间分数阶对流扩散方程的隐式差分近似[J].西北民族大学学报(自然科学版),2013,34(1):7-12. 被引量:5
  • 2夏源,吴吉春.分数阶对流——弥散方程的数值求解[J].南京大学学报(自然科学版),2007,43(4):441-446. 被引量:13
  • 3Gennadii A Bocharov, Fathalla A Rihan. Numerical modelling in biosciences using delay differential equa- tions[J]. Journal of Computational and Applied Math- ematics,2012(1) :134-138. 被引量:1
  • 4W H Enright, Min Hu. Continuous Runge-Kutta methods for neutral volterra integro-differential equa- tions with delay[J]. Applied Numerical Mathematics, 2013(2) ..321-330. 被引量:1
  • 5Desmond J Higham, Tasneem Sardar. Existence and stability of fixed points for a discretised nonlinear reac- tion-diffusion equation with delay[J]. Applied Numer- ical Mathematics,2013(1) ..234-239. 被引量:1
  • 6PODLUBNY I. Fractional Differential Equations[ M]. New York, London:Academic Press, 1999. 被引量:1
  • 7HILFER R. Applications of Fractional Calculus in Physics [ M ].Singapore:Word Scientific,2000. 被引量:1
  • 8MORTON K W, MARYERS D F. Numerical Solution of Partial Differential Equation [ M ]. Cambridge:Cambridge University Press, 2005. 被引量:1
  • 9LUCHKO Y. Initial -boundary- value problems for the generalized multi -term time -fractional diffusion equation [ J ]. J Math Anal Appl,2011,374(2) :538 -548. 被引量:1
  • 10LIU F, ZHUANG P, ANH V, et al. Stability and convergence of the difference methods for the space -time fractional advection - diffusion equation [ J ]. Appl Math Comput, 2007,191 ( 1 ) : 2 - 20. 被引量:1

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部