期刊文献+

空间分数阶Edwards-Wilkinson方程的数值研究 被引量:2

Numerical simulations of the space-fractional Edwards-Wilkinson equation
原文传递
导出
摘要 为了探讨空间分数阶随机生长模型的动力学标度行为,利用Grümwald-Letnikov分数阶导数定义方法求解空间分数阶Edwards-Wilkinson(SFEW)方程在1+1维情况下的数值解,得到了在不同分数阶导数值时的生长指数、粗糙度指数、动力学指数和局域粗糙度指数,这些结果与标度分析得到的结果是一致的。研究结果表明SFEW模型没有出现奇异动力学行为,仍然遵守Family-Vicsek正常标度规律。同时结果也显示,非局域相互作用对SFEW方程的动力学标度行为有着显著的影响。 In order to investigate the dynamical scaling behaviour of the space-fractional stochastic growth model, the space-fractional Edwards-Wilkinson (SFEW) equation in ( 1 + 1 ) -dimensional case based on the Griimwald-Letnikov type fractional derivative was numerically simulated. The scaling exponents including growth exponent, roughness expo- nent, dynamic exponent and local roughness exponent with different fractional orders were obtained, which were consistent with the corresponding scaling analysis. The results show that the anomalous dynamic behaviour does not appear in the SFEW model, which still satisfies the Family-Vicsek normal scaling. The results also imply that the nonlocal interactions affect the scaling behaviour of the SFEW equation.
作者 马靖杰
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2012年第9期121-126,共6页 Journal of Shandong University(Natural Science)
关键词 空间分数阶 Edwards-Wilkinson方程 表面粗糙度 关联函数 space-fractional Edwards-Wilkinson equation surface roughness correlation function
  • 相关文献

参考文献15

  • 1FAMILY F, VICSEK T. Dynamics of fractal surfaces [ M]. Singapore: World Scientific, 1991. 被引量:1
  • 2PODLUBNY I. Fractional differential equations [M]. New York and London: Academic Press, 1999. 被引量:1
  • 3常福宣,陈进,黄薇.反常扩散与分数阶对流-扩散方程[J].物理学报,2005,54(3):1113-1117. 被引量:26
  • 4TORVIK P J, BAGLEY R L. On the appearance of the fractional derivative in the behavior of real materials [ J]. Transaction of the ASME, 1984, 51 : 294-298. 被引量:1
  • 5LIU Fawang, ANH V, TURNER I, et al. Numerical simulation for solute transport in fractal porous media [J].ANZIAM J, 2004, 45(E) : 461-473. 被引量:1
  • 6FAMILY F, VICSEK T. Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model [J]. J Phys A, 1985, 18: L75-81. 被引量:1
  • 7LEITH J R. Fractal scaling of fractional diffusion processes [J]. Signal Processing, 2003, 83 : 2397-2409. 被引量:1
  • 8MANN J A, WOYCZYNSKI W A. Growing fractal interfaces in the presence of self-similar hopping surface diffusion [J]. Physica A, 2001, 291 : 159-183. 被引量:1
  • 9KATZAV E. Growing surfaces with anomalous diffusion: results for the fractal Kardar-Parisi-Zhang equation [ J ]. Phys Rev E, 2003, 68: 031607. 被引量:1
  • 10XIA Hui, TANG Gang, HAN Kui, et al. Scaling behavior of the time-fractional equations for molecular-beam epitaxy growth: scaling analysis versus numerical stimulations[J].Euro Phys J B, 2009, 71(2) : 237-241. 被引量:1

二级参考文献28

  • 1Metzler R and Klafter J 2000 Phys. Rep. 339 1. 被引量:1
  • 2Metzler R, Glockle W G and Nonnenmacher T F 1994 Physica A 211 13. 被引量:1
  • 3Giona M and Roman H E 1992 Physica A 185 87. 被引量:1
  • 4Giona M and Roman H E 1992 J. Phys. Math. Gen. 25 2093. 被引量:1
  • 5Roman H E and Giona M J 1992 Phys. Math. Gen. 25 2107. 被引量:1
  • 6Meeshaert M M, Benson D A and Baumer B 1998 Phys. Rev. E 59 5026. 被引量:1
  • 7Benson D A, Wheatcraft S W and Meeshaert M M 2000 Water Resour. Res. 36 1413. 被引量:1
  • 8amko S G, Kilbss A A and M&ichev O I 1993 Fractional Integrals and Derivatives, Theory and Applications (Amsterdam: Gordon and Breach). 被引量:1
  • 9Gorenflo R, Mainardi F, Moretti D, Pagnini G and Paradisi P 2002 Chem. Phys. 284 521. 被引量:1
  • 10Gorenflo R, Mainardi F, Moretti D, Pagnini G and Paradisi P 2002 Physica A 305 106. 被引量:1

共引文献28

同被引文献14

  • 1邵东南,张弢.抛物型方程差分格式的稳定性分析[J].沈阳大学学报,2003,15(4):94-96. 被引量:2
  • 2郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011. 被引量:25
  • 3LeithJ R. Fractal Scaling of Fractional Diffusion Processes[J]. Signal Processing, 2003,83 (11): 2397 - 2409. 被引量:1
  • 4MannJ A, Woyczynski W A. Growing Fractal Interfaces in the Presence of Self-similar Hopping Surface Diffusion[J]. Physica A, 2001,291: 159 - 183. 被引量:1
  • 5Burov S, Barkai E. Fractional Langevin Equation: Over?damped, Under-damped and Critical Behaviors[J].J. Phys, Rev. E. , 2008,78(3): 1- 18. 被引量:1
  • 6Katzav E. Growing Surfaces with Anomalous Diffusion: Results for the Fractal Kardar-ParisiZhang Equation] L].J. Phys, Rev. E. , 2003,68:031607. 被引量:1
  • 7Xia Hui, Tang Gang, Han Kui, et al. Scaling Behavior of the Time-fractional Equations for Molecular-beam Epitaxy Growth: Scaling Analysis Versus Numerical Stimulations[n Euro. Phys,J. B., 2009,71(2):237-241. 被引量:1
  • 8Xia Hui, Tang Gang,MaJingjie, et al. Scaling Behavior of the Time-fractional Kardar-Parisi-Zhang Equation[J]. Physica A, 2011,44:275003. 被引量:1
  • 9郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解.北京:科学出版社,2011. 被引量:2
  • 10Meerschaert M M, Tadjeran C. Finite Difference Approximations for Fractional Advection-dispersion Flow Equations[J]. J. Comput. Appl. Math. , 2004, 172(2): 65 - 77. 被引量:1

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部