摘要
众所周知,遗传算法的运行机理及特点是具有定向制导的随机搜索技术,其定向制导的原则是:导向以高适应度模式为祖先的"家族"方向。以此结论为基础,利用随机化均匀设计的理论和方法,对遗传算法中的交叉操作进行了重新设计,给出了一个新算法,称之为随机化均匀设计遗传算法。最后将随机化均匀设计遗传算法应用于求解0-1背包问题,并与简单遗传算法和佳点集遗传算法进行比较。通过模拟比较,可以看出新的算法不但提高了算法的速度和精度,而且避免了其他方法常有的早期收敛现象。
It is well known that the GA is a guided random search and the guiding direction always aims at the family whose ancestors have schemata with high fitness.Based on the results,the crossover operation in GA is redesigned by using the principle of random uniform design sampling.Then a new GA called Genetic Algorithm based on Random Uniform Design Sampling is presented.The new GA is applied to solve the 0-1 knapsack question.Compared to simple GA and Good Point GA for solving this problem,the simulation results show that the new GA has superiority in speed,accuracy and overcoming premature.
出处
《计算机工程与应用》
CSCD
北大核心
2009年第30期45-47,52,共4页
Computer Engineering and Applications
基金
安徽省高校自然科学研究计划项目No.KJ2007B152
安徽省教育厅自然科学研究项目(No.2005KJ222
No.2006KJ046B)
安徽省高校青年教师资助计划项目(No.2007jql180)~~
关键词
遗传算法
随机化均匀设计
随机化均匀设计遗传算法
Genetic Algorithm(GA)
Random Uniform Design Sampling(RUDS)
Genetic Algorithm Based on Random Uniform Design Sampling(RUDSGA)