摘要
证明Lie环的两个幂零准则,即若Lie环L满足(ⅰ)L是可解的;(ⅱ)L/2γ(L)有限生成的;(ⅲ)对任意的x∈L,存在n∈N,使得x是左n-Engel的,则L是幂零的.且若条件(ⅱ)换成(ⅱ)′L满足中心化子上的极小条件,也可得L是幂零的.
Two nilpotency criteria for Lie rings are proved. Let L be a Lie ring and suppose that(ⅰ) L is soluble,(ⅱ)L/γ2(L) is finitely generated,(ⅲ)for each x∈L, there exists n∈N, such that x is left n-Engel, then L is niloptent. Moreover, if(ⅱ) is replaced by (ⅱ)′, L satisfies the minimal condition on centralizers,then L also is nilpotent.
出处
《湖北大学学报(自然科学版)》
CAS
北大核心
2009年第3期217-221,共5页
Journal of Hubei University:Natural Science
基金
国家自然科学基金(10371032)资助
教育部博士点基金(20050512002)资助