期刊文献+

p^4阶群与李环结构之间的关系

Relation between the group of order p^4 and the structure of Lie ring
下载PDF
导出
摘要 继单群分类定理完成之后,有限p群逐渐成为有限群研究的热点.证明了在p^4阶群G关于其子群N(G)={a-pb-papbp,c-p2b-p2ap 2-pbp2c pa,b,c∈G}的商群中定义加法和Lie乘运算为aN(G)bN(G)=(ab)pN(G),aN(G)bN(G)[a,b]N(G),则GN(G)成为Lie环.由于Lie环的可算性,这一结论有利于对p4阶群的结构进行研究. After the accomplishment of the classification of finite simple groups,peoples′ attention focus on the study of finite p-groups more and more.Proved that if we define the addition and muliplication in the factor group of subgroup N(G)={a-pb-papbp,c-p2b-p2ap 2-pbp2c pa,b,c∈G} in G of order p4 as aN(G)bN(G)=(ab)pN(G),aN(G)bN(G)[a,b]N(G),respectively then will become a Lie ring.Because the Lie ring is easy to calculate so this conclusion is helpful in studying the structure of the group of order.
出处 《高师理科学刊》 2012年第1期41-43,共3页 Journal of Science of Teachers'College and University
关键词 有限P群 p4阶群 换位子 李环 子群 finite groups group of order p^4 commutator Lie ring subgroup
  • 相关文献

参考文献7

  • 1Bryant R M, Kovacs L C. Lie representations and groups of prime power order[J]. J London Math Soc, 1978, 17 ( 2 ): 415--421. 被引量:1
  • 2徐明曜著..有限群导引 上[M].北京:科学出版社,2007.
  • 3Jacobson N. Basic Algebra Ⅰ,Ⅱ[M]. San Francisco: W H Freeman and Company, 1974. 被引量:1
  • 4徐明曜,曲海鹏.有限P群[M].北京:北京大学出版社,2010. 被引量:13
  • 5苏育才著..有限维半单李代数简明教程[M].北京:科学出版社,2008:191.
  • 6Derek J S, Robinson A. Course in the Theory of Groups[M]. New York: Springer-Verlag, 1982:117-142. 被引量:1
  • 7Huppert B, Blackburn N. Finite GroupsⅡ[M]. New York: Springer-Verlag, 1982:316-349. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部