期刊文献+

单纯ARIMA模型和ARIMA-GRNN组合模型在猩红热发病率中的预测效果比较 被引量:23

Comparison of predictive effect between the single auto regressive integrated moving average (ARIMA) model and the ARIMA-generalized regression neural network (GRNN) combination model on the incidence of scarlet fever
原文传递
导出
摘要 【导读】探讨单纯求和自回归滑动平均(ARIMA)模型和求和自回归滑动平均模型与广义回归神经网络(GRNN)组合模型在猩红热发病率研究中的应用。该研究对某市2000--2006年猩红热月发病率资料建立ARIMA模型,然后将其拟合值作为GRNN的输入,实际值作为网络的输出训练网络,然后比较两个模型的效果。结果表明,单纯ARIMA模型和组合模型的平均误差率(MER)分别为31.6%、28.7%;决定系数(R^2)分别为0.801、0.872。组合模型的效果要优于单纯ARIMA模型,可以用于发病率的拟合与预测。 Application of the 'single auto regressive integrated moving average (ARIMA) model' and the 'ARIMA-generalized regression neural network (GRNN) combination model' in the research of the incidence of scarlet fever. Establish the auto regressive integrated moving average model based on the data of the monthly incidence on scarlet fever of one city, from 2000 to 2006. The fitting values of the ARIMA model was used as input of the GRNN, and the actual values were used as output of the GRNN. After training the GRNN, the effect of the single ARIMA model and the ARIMA-GRNN combination model was then compared. The mean error rate (MER) of the single ARIMA model and the ARIMA-GRNN combination model were 31.6%, 28.7% respectively and the determination coefficient (R^2) of the two models were 0.801,0.872 respectively. The fitting efficacy of the ARIMA-GRNN combination model was better than the single ARIMA, which had practical value in the research on time series data such as the incidence of scarlet fever.
出处 《中华流行病学杂志》 CAS CSCD 北大核心 2009年第9期964-968,共5页 Chinese Journal of Epidemiology
基金 基金项目:安徽省教育厅人文社科重点项目(2009sk192zd) 安徽医科大学学术技术带头人科研资助
关键词 猩红热 自回归滑动平均模型 广义回归神经网络 Scarlet fever Auto regressive integrated moving average model Generalized regression neural network
  • 相关文献

参考文献12

  • 1Gidaris D, Zafeiriou D, Mavridis P, et al. Scarlet fever and hepatitis: a case report. Hippokratia, 2008,12(3 ) : 186-187. 被引量:1
  • 2王振龙,胡永宏.应用时间序列分析.北京:科学出版社,2005. 被引量:1
  • 3Ubeyli ED, Guler I. Spectral analysis of internal carotid arterial Doppler signals using FFT, AR, MA, and ARMA methods. Comput Biol Med, 2004,34 : 293-306. 被引量:1
  • 4Stadnytska T, Braun S, Wemer J. Comparison of automated procedures for ARMA model identification. Behav Res Methods, 2008,40 ( 1 ) : 250-262. 被引量:1
  • 5钟珞,饶文碧,邹承明著..人工神经网络及其融合应用技术[M].北京:科学出版社,2007:160.
  • 6董长虹编著..Matlab神经网络与应用 第2版[M].北京:国防工业出版社,2007:323.
  • 7Specht DF. A general regression neural network. IEEE Trans Neural Networks, 1991,2(6) :568-576. 被引量:1
  • 8严薇荣,徐勇,杨小兵,张惠娟,施侣元,周宜开.基于ARIMA-GRNN组合模型的传染病发病率预测[J].中国卫生统计,2008,25(1):82-83. 被引量:36
  • 9沈艳辉,江初,敦哲,王全意,吴疆,孙尚拱,蒲永兰.北京市城区1957~2004年猩红热流行趋势及预测[J].现代预防医学,2008,35(7):1224-1226. 被引量:19
  • 10Bates JM, Granger CWJ. The combination of forecasts. Operational Research Quarterly, 1969,20 ( 4 ) : 451-468. 被引量:1

二级参考文献21

共引文献56

同被引文献196

引证文献23

二级引证文献184

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部