期刊文献+

基于灰色广义回归神经网络的工业废水排放量预测 被引量:10

Forecast of industrial waste water volume based on GM-GRNN
下载PDF
导出
摘要 将GM(1,1)预测模型与广义回归神经网络结合起来,构建了一种新型串联灰色神经网络预测方法,有效地将灰色系统的贫乏数据建模和神经网络特有的非线性适应性信息处理能力相融合,充分提取历史数据及相关因素数据包含的信息,建立精度较高的预测模型。通过对工业废水排放量实例预测,结果表明该方法是有效可行的。 A new series grey ANN forecast model was proposed by unified the GM (1,1) with GRNN, effectively integrated the Grey System that can be constructed the forecast model with poor information and the GRNN was capable of processing non-linear adaptable information, so the new model had both of their advantages. It be fully considered the historic data and correlation factor data, the forecasting results were high precision. An example of industrial waste water volume was forcasted, the results have shown that this method was effective and feasible.
出处 《水资源与水工程学报》 2007年第1期64-67,共4页 Journal of Water Resources and Water Engineering
关键词 改进的灰色模型 广义回归神经网络 相关因素数据 工业废水排放量预测 improved GM (1,1) GRNN correlation factor data forecast of industrial waste water volume
  • 相关文献

参考文献8

二级参考文献12

共引文献374

同被引文献62

引证文献10

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部