期刊文献+

线性随机微分方程的全隐式Euler方法 被引量:2

Full Implicit Euler Methods for Linear Stochastic Differential Equation
下载PDF
导出
摘要 由于随机微分方程的全隐式Euler方法不是均方收敛的,一般认为它没有意义。然而,从运用计算机实现的角度来说几乎处处意义下的收敛和稳定比均方意义的收敛和稳定更具优势。针对线性随机微分方程,提出了一类全隐式Euler方法,证明了该方法生成的数值解几乎处处收敛,给出了该方法几乎处处稳定的充要条件。 The full implicit Euler methods for the stochastic differential equations were criticized for failing to converge to the true solutions in mean square. However, the almost sure convergence and stability were superior to the convergence and stability in mean square from the viewpoint of computer implementation. For the linear stochastic differential equations a class of the full implicit Euler methods was proposed, the numerical solution generated by it was almost surely convergent, and the necessary and sufficient condition of almost sure stability for the method were given.
作者 范振成
机构地区 闽江学院数学系
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第17期5403-5405,共3页 Journal of System Simulation
基金 福建省科技厅青年人才项目(2008F306010002)
关键词 线性随机微分方程 全隐式Euler方法 几乎处处收敛 几乎处处稳定 linear stochastic differential equations full implicit Euler methods almost sure convergence almost sure stability
  • 相关文献

参考文献10

  • 1Saito Y, Mitsui T. Stabiltiy Analysis of Numerical Schemes for Stochastic Differential Equations [J]. SIAM J. Numer. Anal. (S0036-1429), 1996, 33(6): 2254-2267. 被引量:1
  • 2Kloeden P E, Platen E. The Numerical Solution of Stochastic Differential Equations [M]. New York, USA: Springer-Verlag, 1992. 被引量:1
  • 3周立群,胡广大.随机延迟微分方程复合θ-方法的稳定性[J].系统仿真学报,2007,19(11):2407-2409. 被引量:2
  • 4王文强,李寿佛,黄山.非线性随机延迟微分方程Euler-Maruyama方法的收敛性[J].系统仿真学报,2007,19(17):3910-3913. 被引量:6
  • 5Liu M Z, Cao W R, Fan Z C. Convergence and Stability of Semi-implicit Euler Methods for a Linear Stochastic Delay Differential Equation [J]. J. Comput. Appl. Math. (S0377-0427), 2004, 170(2): 255-268. 被引量:1
  • 6Fan Z C, Liu M Z, Cao W R. Existence and Uniqueness of the Solutions and Convergence of Semi-implicit Euler Methods for Stochastic Pantograph Equations [J]. J. Math. Anal. Appl. (S0022-247X), 2007, 325(2): 1142-1159. 被引量:1
  • 7Fleury G. Convergence of Schemes for Stochastic Differential Equations [J]. Probabilistic Engineering Mechanics (S0266-8920),2006, 21(1): 25-43. 被引量:1
  • 8Higham D J. Mean-Square and Asymptotic Stability of the Stochastic Thcta Method [J]. SIAM J. Numcr. Anal. (S0036-1429), 2000 38(3): 753-769. 被引量:1
  • 9Bryden A, Higham D J. On the Boundedness of Asymptotic Stability Regions for the Stochastic Theta Method [J]. BIT Numer. Math, (S0006-3835), 2003, 43(1): 1-6. 被引量:1
  • 10周立群,胡广大.随机延迟微分方程Euler-Maruyama方法的T-稳定性[J].系统仿真学报,2007,19(21):4889-4892. 被引量:3

二级参考文献34

共引文献8

同被引文献19

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部