期刊文献+

一类特殊比例方程的稳定性分析 被引量:2

Stability Analysis for Special Kind of Pantograph Equation
下载PDF
导出
摘要 研究一类特殊比例方程的稳定性。通过系统变换给出了方程解析解渐近稳定的充分条件。进一步,引用一类变步长格式,证明了L-稳定的变步长Runge-Kutta方法将保持此类特殊比例方程的稳定性质。 The stability of a special kind of pantograph equation was studied. A sufficient condition of the asymptotic stability for the system was proposed through transformation. Furthermore, the variable stepsize was quoted. It is proved that the L -stable Runge-Kutta methods with variable stepsize preserve the stability of the equation.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第11期2598-2599,2615,共3页 Journal of System Simulation
基金 中国国家自然科学基金(10271036)
关键词 比例微分方程 微分代数方程 稳定性 数值方法 Pantograph Equation Differential Algebraic Equation Stability Numerical Method
  • 相关文献

参考文献1

共引文献2

同被引文献13

  • 1曹婉容,刘明珠.随机延迟微分方程Euler-Maruyama数值方法的T-稳定性[J].哈尔滨工业大学学报,2005,37(3):303-305. 被引量:10
  • 2周立群,胡广大.随机延迟微分方程复合θ-方法的稳定性[J].系统仿真学报,2007,19(11):2407-2409. 被引量:2
  • 3Kolmanovskii V B, Shaikhet L E. A method for constructing Lyapunov functionals for stochastic differential equations of neutral type [J]. Differential Equations (S0012-2661), 1996, 31(11): 1819- 1825. 被引量:1
  • 4Mao X R. Exponential stability in mean square of neutral stochastic diferential functional equations [J]. Systems and Control Letters (S0167-6911), 1995, 26(1): 245-251. 被引量:1
  • 5Liu K, Xia X. On the exponential stability in mean square of neutral stochastic functional differential equations [J]. Systems and Control Letters (S0167-6911), 1999, 37(4): 207-215. 被引量:1
  • 6Kolmanovskii V B, Shaikhet L E. Construction of Lyapunov functionals for stochastic hereditary systems: A survey of some recent results [J]. Mathematical and Computer Modelling (S0895-7177), 2002, 36(6): 691-716. 被引量:1
  • 7Higham D J. Mean-square and asymptotic stability of the stochastic theta method [J]. SIAM J. Numer. Anal. (S0036-1429), 2000, 38(3): 753-769. 被引量:1
  • 8Cao W R, Liu M Z, Fan Z C. MS-stability of the Euler - Maruyama method for stochastic differential delay equations [J]. Appl. Math. Comput. (S0096-3003), 2004, 159(1): 127-135. 被引量:1
  • 9Saito Y, Mitsui T. T-Stability of numerical schemes for stochastic differential equations [C]//World Sci. Ser, Appl. Anal., World Sci. Publishing, River Edge, NJ, 1993, 2: 333-344. 被引量:1
  • 10Burrage K, Burrage P, Mitsui T. Numerical solutions of stochastic differential equations-implementation and stability issues [J]. J. Comput. Appl. Maths. (S0377-0427), 2000, 125(1/2): 171-182. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部