摘要
研究一类特殊比例方程的稳定性。通过系统变换给出了方程解析解渐近稳定的充分条件。进一步,引用一类变步长格式,证明了L-稳定的变步长Runge-Kutta方法将保持此类特殊比例方程的稳定性质。
The stability of a special kind of pantograph equation was studied. A sufficient condition of the asymptotic stability for the system was proposed through transformation. Furthermore, the variable stepsize was quoted. It is proved that the L -stable Runge-Kutta methods with variable stepsize preserve the stability of the equation.
出处
《系统仿真学报》
EI
CAS
CSCD
北大核心
2005年第11期2598-2599,2615,共3页
Journal of System Simulation
基金
中国国家自然科学基金(10271036)
关键词
比例微分方程
微分代数方程
稳定性
数值方法
Pantograph Equation
Differential Algebraic Equation
Stability
Numerical Method