期刊文献+

求解随机微分方程的θ-Heun方法的收敛性 被引量:1

The Convergence of θ-Heun Method for Solving Stochastic Differential Equations
下载PDF
导出
摘要 Heun方法是一种求解随机微分方程数值解的重要方法,在该方法的基础上构造出一种新的数值求解方法,即θ-Heun方法,且研究了θ-Heun方法用于求解随机微分方程的收敛性.针对一个具体的标量自治随机微分方程,当方程的两个系数都满足Lipschitz和线性增长条件时,得到θ-Heun方法在均值意义、均方意义上的局部收敛阶分别为2和1,均方强收敛阶为1.并通过数值实例证明该方法比Heun方法得到的数值解更逼近解析解. Heun method was an important numerical technique for solving stochastic differential equations.A new method based on Heun method was developed,known as theθ-Heun method.And the convergence of this method was examined.For scalar autonomous stochastic differential equations,when the two coefficients satisfied the linear growth condition and global Lipschitz condition,the order of its local convergence in mean was two,the order of its local convergence in mean square was one,and the order of its strong convergence square was one.Finally,the numerical solution obtained byθ-Heun method was more approximate to analytical solution than Heun method,which was proved by numerical example.
作者 张引娣 李瑞 刘奋进 ZHANG Yindi;LI Rui;LIU Fenjin(Faculty of Science,Chang′an University,Xi′an 710064,China)
机构地区 长安大学理学院
出处 《郑州大学学报(理学版)》 CAS 北大核心 2019年第1期34-38,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金项目(211012140334 11401044 11471005)
关键词 随机微分方程 θ-Heun方法 收敛性 LIPSCHITZ条件 stochastic differential equation θ-Heun method convergence Lipschitz condition
  • 相关文献

参考文献4

二级参考文献29

  • 1朱霞.求解随机微分方程的欧拉法的收敛性[J].华中科技大学学报(自然科学版),2003,31(3):114-116. 被引量:17
  • 2曹婉容.线性随机延迟微分方程半隐式Euler方法的局部收敛性证明[J].黑龙江大学自然科学学报,2007,24(1):97-99. 被引量:3
  • 3Maruyama G. Continuous Markov processes and stochastic equations[J]. Math Palermo, 1955,4 : 48-90. 被引量:1
  • 4Kuchler U, Platen E. Strong discrete time approximation of stochastic differential equations with time delay [J]. Math Comput Simulation, 2000,54 : 189-205. 被引量:1
  • 5Kuchler U, Platen E. Weak discrete time approximation of stochastic differential equations with time delay [J]. Mathematics and Computers in Simulation, 2002, 59 (6) :497-507. 被引量:1
  • 6Mao Xuerong, Sabanis S. Numerical solutions of stochastic differential delay equations under local Lipschitz condition [J]. Journal of Computational and Applied Mathematics, 2003,151: 215-227. 被引量:1
  • 7Liu Mingzhu, Cao Wanrong, Fan Zhencheng. Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation [J]. Journal of Computational and Applied Mathematics, 2004,170 : 255-268. 被引量:1
  • 8Burrage K, Burrage P M. High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations[J]. Appl Numer Math, 1996,22: 81 - 101. 被引量:1
  • 9Platen E, Wagner W. On a Taylor formula for a class of Ito processes [J]. Probability and Mathematical Statistics, 1982(3) : 37-51. 被引量:1
  • 10Maruyama G. Continuous Markov processes and stochastic equations [J]. Math Palermo, 1955(4): 48-90. 被引量:1

共引文献20

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部