期刊文献+

自治标量随机微分方程混合欧拉格式的收敛性和稳定性 被引量:4

Convergence and Stability of the Composite Euler Method for Autonomous Scalar Stochastic Differential Equations
下载PDF
导出
摘要 随机微分方程广泛地出现于经济学、生物学、物理学、电子、无线电通讯等领域,所以研究随机微分方程的解是十分必要的.由于随机微分方程的解析解求解困难,其数值方法的研究越来越引起人们的重视.对于求解随机微分方程的数值方法,衡量其有效性的标准是收敛性和稳定性.本文证明混合欧拉格式用于求解自治标量随机微分方程时,在方程的偏移系数和扩散系数均满足线性增长条件和全局Lipschitz条件时的收敛性,并且求出了局部均值收敛阶和均方强收敛阶.接着讨论了两种试验方程混合欧拉格式的稳定性. Stochastic differential equation has been widely used in economics, biology, physics, electronics, wireless communication, etc, it is very important to study its solution. Since most stochastic differential equations are not explicitly solvable, numerical analysis has aroused a lot of attention. In designing numerical schemes for solving stochastic differential equations, convergence and stability are the criteria to measure the efficiency of a numerical scheme. In this paper, it is proved that the composite Euler method is convergent when it is used to solve the scalar autonomous stochastic differential equations, where both the drift coefficient and the diffusion coefficient satisfy the linear growth condition and the global Lipschitz condition. The local convergence order and the mean square strong convergence order are presented as well. The stability condition of the composite Euler schemes of the test equation is discussed.
作者 贾俊梅
出处 《工程数学学报》 CSCD 北大核心 2013年第3期427-432,共6页 Chinese Journal of Engineering Mathematics
关键词 随机微分方程 混合欧拉法 收敛性 稳定性 stochastic differential equations composite Euler method convergence stability
  • 相关文献

参考文献12

  • 1朱霞..几类随机数值方法的稳定性与收敛性[D].华中科技大学,2004:
  • 2王新..一类随机微分方程的差分算法的研究[D].河海大学,2008:
  • 3郭小林.随机微分方程欧拉格式算法分析[J].大学数学,2006,22(3):94-99. 被引量:4
  • 4刘小清,吴声昌.随机微分方程计算方法及其应用[J].计算物理,2002,19(1):1-7. 被引量:4
  • 5Martin J S, Torres S. Euler scheme for solutions of a countable system of stochastic differential equations[J]. Statistic and Probability Letters, 2001, 54(3): 251-259. 被引量:1
  • 6Zhang X C. Euler-Maruyama approximations for SDEs with non-Lipschitz coefficients and applications[J]. Journal of Mathematical Analysis and Application, 2006, 316:447-458. 被引量:1
  • 7Hofmann N B. Stability of weak numerical schemes for stochastic differential equations[J]. Mathematics and Computers in Simulation, 1995, 38:63-68. 被引量:1
  • 8Wang W Q, Chen Y P. Mean-square stability of semi-implicit Euler method for nonlinear neutral stochastic delay differential equations[J]. Applied Numerical Mathematics, 2001, 61:696-701. 被引量:1
  • 9Torok C. Numerical solution of linear stochastic differential epuations[J]. Computers and Mathematics with Applications, 1994, 27(4): 1-10. 被引量:1
  • 10Hofmann N. Stability of weak numerical schemes for stochastic differential equations[J]. Computers and Mathematics with Applications, 1994, 28(10-12): 45-57. 被引量:1

二级参考文献8

  • 1Kloden P E,Platen E.Numerical solutions of stochastic differential equations[M].Berlin:Springer,1992. 被引量:1
  • 2Boleau N,Lepinge D.Numerical methods for stochastic processes[M].New York:Wiley,1994. 被引量:1
  • 3Vlad Bally,Denis Talay.The Euler scheme for stochastic differential equations:error analysis with Malliavin caculus[J].Mathematics and Computers in Simulation,1995,(38):35-41. 被引量:1
  • 4Isao Shoji.A note asymptotic properties of the estimator derived from the Euler method for diffusion processes at discrete times[J].Statistics & Probability Letters,1997,(36):153-159. 被引量:1
  • 5Lépingle D.Euler scheme for reflected stochastic differential equations[J].Mathematics and Computers in Simulation,1995,(38):119-126. 被引量:1
  • 6Jaime San Martin,Scoledad Torres.Euler scheme for solutions of a countable system of stochastic differential equations[J].Statics & Probability Letters,2001,(54):251-259. 被引量:1
  • 7Norbert Hofmann.Stability of weak numerical schemes for stochastic differential equations[J].Mathematics and Computers in Simulation,1995,(38):63-68. 被引量:1
  • 8Li, CW,Wu, SC,Liu, XQ.DISCRETIZATION OF JUMP STOCHASTIC DIFFERENTIAL EQUATIONS IN TERMS OF MULTIPLE STOCHASTIC INTEGRALS[J].Journal of Computational Mathematics,1998,16(4):375-384. 被引量:1

共引文献6

同被引文献17

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部