期刊文献+

基于GMRA的Parseval框架小波 被引量:1

Parseval Frame Wavelets Associated with GMRA
下载PDF
导出
摘要 研究L2(Rd)中A伸缩的Parseval框架小波的性质,这里的A指的是行列式值取自然数的任意d×d阶扩展矩阵.首先,给出框架小波为半正交时的充要条件,然后证明Parseval框架小波为半正交的充要条件,得到所有基于广义多分辨分析(GMRA)的Parseval框架小波等价于闭子空间W0的Parseval框架为{TkΨ:k∈Zd}的条件. This paper studies Parseval frame wavelets(PFWs) in L^2 (R^d) with A dilations, where A is an arbitrary expanding d × d matrix, such that det A = c, c ∈ N. Firstly, we prove that a necessary and sufficient condition for the frame wavelet is a semi-orthogonal frame wavelet, and that a necessary and sufficient condition for the Parseval frame wavelet is a semi-orthogonal Parseval frame wavelet. It is observed that all PFWs associated with generalized multiresolution analysis (GMRA) are equivalent to a closed subspace W0 for which (TkΨ:k ∈ Z^d} is a Parseval frame.
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2009年第5期441-445,共5页 Journal of Henan University:Natural Science
关键词 扩展矩阵 框架 半正交框架小波 Parseval框架小波 广义多分辨分析 expanding matrix frame semi-orthogonal frame wavelet Parseval frame wavelet generalized multiresulation anaylsis
  • 相关文献

参考文献6

  • 1杨守志,唐远炎,程正兴.α尺度紧支撑正交多小波的构造[J].计算数学,2002,24(4):451-460. 被引量:22
  • 2龙瑞麟著..高维小波分析[M],1995:375.
  • 3Daubechies I. Ten lectures on wavelets [M]. Philadelphia:SIAM Publ, 1992. 被引量:1
  • 4Mallat S. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Trans. Pattern. Anal. Machine. Intell, 1989,11(7) : 674--693. 被引量:1
  • 5Benedetto J J, Li S. The theory of multiresolution analysis frames and applications to filter banks [J]. Appl. Comput. Harmon. Anal, 1998, 5(4): 389--427. 被引量:1
  • 6Dai X, Diao Y, Gu Q, et al. Frame wavelet sets in R^d [J]. J. Comput. Appl. Math, 2003, 155(1):69--82. 被引量:1

二级参考文献9

  • 1[1]J. Geronimo, D.P. Hardin, P. Massopust, Fractal functions and wavelet expansions based on several scaling functions, J. Approx. Theory, 78(1994), 373-401. 被引量:1
  • 2[2]C.K. Chui, J. Lian, A study on orthonormal multiwavelets, J. Appl. Numer. Math.,20(1996), 273-298. 被引量:1
  • 3[3]T.N.T. Goodman, S.L. Lee, Wavelets of multiplicity r, Trans. Amer. Math. Soc.,342(1994), 307-324. 被引量:1
  • 4[4]G.C. Donovan, J. Geronimo, D.P. Hardin, Construction of orthogonal wavelets using fractal interpolution functions, SIAM J. Math. Anal., 27(1996), 1158-1192. 被引量:1
  • 5[5]J. Lian, Orthogonal criteria for multiscaling functions, Appl. Comp. Harm. Anal., 5(1998),277-311. 被引量:1
  • 6[6]I. Daubechies, Orthoronmal bases of compactly supported wavelets, Comm. Pure. Appl.Math., 41(1998), 909-996. 被引量:1
  • 7[7]W. Lanton, S.L. Lee, S. Zuowei, An algorithm for matrix extension and wavelet construction, Math. Comp., 65(1996), 723-734. 被引量:1
  • 8[8]S.S. Goh, V.B. Yap, Matrix extension and biorthogonal multiwavelets Construction, Linear Algebra and Applictions., 269(1998), 139-157. 被引量:1
  • 9[9]V. Strela, P.N. Heller, G. Strang, P. Topiwala et al, The application of multiwavelet filterbanks to image processing, IEEE Trans. Image. Process., 8(1999), 548-563. 被引量:1

共引文献21

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部