期刊文献+

具有特殊伸缩矩阵的Parseval框架小波集的结构 被引量:3

Structure of the Set of Parseval Frame Wavelets with Special Dilation Matrices
原文传递
导出
摘要 揭示具有特殊伸缩矩阵的Parseval框架小波集的丰富结构.借助于平移不变空间和维数函数,研究了具有特殊伸缩矩阵M的Parseval框架小波(M-PFW)、半正交M-PFW和MRA M-PFW的各种性质,探讨了M-PFW集合的各种子类,给出了这些子类的构造性算例. The purpose of this paper is to find out the deep and rich structure of the set of Parseval frame wavelets with special dilation matrices (M-PFW). We study the all kinds of properties of M-PFW, semi-orthogonal M-PFW and MRA M-PFW based on shift-invariant space and the dimension function. We investigate various subclass of the set of M-PFWs. Several constructive examples illustrating the various possibilities are given.
作者 黄永东
出处 《数学学报(中文版)》 CSCD 北大核心 2016年第2期163-186,共24页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10961001 61261043) 宁夏自然科学基金重点资助项目(NZ13084)
关键词 特殊伸缩矩阵 Parseval框架小波 平移不变空间 维数函数 special dilation matrices Parseval frame wavelets shift-invariant space dimension function
  • 相关文献

参考文献27

  • 1Bakid D., Semi-orthogonal Parseval frame wavelets and generalized multiresolution analyses, Appl. Comput. Harmon. Anal, 2006, 21: 281-304. 被引量:1
  • 2Baki D., Krishtal D., Wilson E., Parseval frame wavelets with E(2)-dilations, Appl. Comput. Harmon. Anal., 2005, 19(2): 386-431. 被引量:1
  • 3Benedetto J., Treiber O., Wavelet Frames: Multiresolution Analysis and Extension Principles, in Wavelet Transform and Time-Frequency Signal Analysis, L. Debnath. Ed., Applied and Numerical Haimonic Analysis, Birkhuser, Boston, USA, 2001. 被引量:1
  • 4Benedetto J., Li S., The theory of multiresolution analysis frame and application to filter banks, Appl. Comput. Harmon. Anal., 1998, 5(4): 389-427. 被引量:1
  • 5Bownik M., A characterization of affine dual frame in L2(Rn), Appl. Comput. Harmon. Anal., 2000, 8(2): 282-309. 被引量:1
  • 6Bownik M., The structure of shift-invariant subspace of L2(n), J Funct. Anal., 2000, 177(2): 282-309. 被引量:1
  • 7Bownik M., Rzeszotnik Z., Speegle D., A characterization of dimension of wavelets, Appl. Comput. Harmon. Anal., 2001, 10(1): 61 70. 被引量:1
  • 8Bownik M., Rzeszotnik Z., On the existence of multiresolution anMysis for framelets, Math. Ann., 2005, 332: 705 72O. 被引量:1
  • 9Christensen O., An Introduction to Frames and Reisz Bases, Birkh&user, Boston, USA, 2003. 被引量:1
  • 10Dai X., Larson D., Speegle D., Wavelet sets in n, j. Fourier Anal. Appl., 1997, 3(2): 451-456. 被引量:1

同被引文献10

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部