期刊文献+

基于卡尔曼滤波的RBF神经网络和PD复合控制研究 被引量:10

Study of RBF Neural Network and PD Composite Control Based on Kalman Filter
下载PDF
导出
摘要 针对工业机器人控制系统在实际工作中不可避免地要受到随机噪声的影响,提出了基于卡尔曼滤波的RBF神经网络与PD复合控制器设计,该控制器由PD反馈、RBF神经网络前馈控制器和卡尔曼滤波器三部分构成;基于卡尔曼滤波的PD和RBF神经网络复合控制具有优良的控制性能和动态品质,能快速跟踪设定的参考信号,而且无大的超调和振荡出现,只需较少的控制能量,明显抑制白噪声的污染,提高系统自适应性和鲁棒性;仿真结果表明了其有效性。 Industrial robot control system was influenced inevitably by random noise during its running. A RBF neural network and PD combined controller was proposed based on the Kalman filter, the controller was composed of RBF neural network feed forward, PD feed back and Kalman filter. The control property and dynamic performance of RBF neural network and PD composite control have been greatly improved based on Kalman filter. It can fast track the fixed value without overshoots and oscillations based on less control energy, and the white noise was suppressed, thus its adaptability and robustness can be enhanced. The simulation results show the efficiency of the combined controller.
出处 《计算机测量与控制》 CSCD 北大核心 2009年第8期1551-1553,1573,共4页 Computer Measurement &Control
基金 国家863计划资助项目(2006AA10Z259)
关键词 随机噪声 卡尔曼滤波 RBF神经网络 PD控制 random noise Kalman filter RBF neural network PD control
  • 相关文献

参考文献11

  • 1Li Xinchun, Yi Jianqiang, Zhao Dongbin. A novel approach to prove the stability of PD control with feedforwarct compensation in robotic trajectory tracking [A]. Proceedings of 2004 International Conference on Intelligent Mechatronics and Automation [ C]. 2004:45-49. 被引量:1
  • 2Rocco P. Stability of PID control for industrial robot arms [J]. IEEETransonRobot Automation, 1996, 12 (4): 606-614. 被引量:1
  • 3辛菁,刘丁,班建安.自适应卡尔曼滤波器在机器人控制中的应用[J].西安理工大学学报,2007,23(2):136-139. 被引量:8
  • 4张伟,朱大奇,孔敏,李武朝.基于改进的CMAC神经网络与PID并行控制的研究[J].计算机测量与控制,2005,13(12):1359-1360. 被引量:16
  • 5Greg Welch and Gary Bishop. An Introduction to the Kalman Filter [EB/OL]. http://www. cs. unc. edu/-welch/media/pdf/ kalman_intro. pdf. 被引量:1
  • 6Budapest Polytechnic. Kalman--Filter Based Control and Performance Monitoring Systems [J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2004, 8 (5): 535-543. 被引量:1
  • 7Ventzas D E. TEI Lamia. Kalman filters for dynamic position control of large scales ystems [A]. Industrial Electronics, Control, and Instrumentation, Proceedings of the 1996 IEEE IECON 22nd International Conference [C]. 1996, 2 (2): 647-652. 被引量:1
  • 8Sasiadek J Z, Wang Q. Sensor fusion based on fuzzy Kalman filtering for autonomous robot vehicle [A]. Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference [ C]. 1999, 4 (4): 2970-2975. 被引量:1
  • 9邹凌,孙玉强,孙琦.基于卡尔曼滤波器的PID控制仿真研究[J].微计算机信息,2007,23(06S):79-81. 被引量:18
  • 10Boris M. Miller. Evgeny Ya. Rubinovich. Kalman filter for controlled hybrid systems[J]. Systems & Control Letters. 2003, 50 (1): 39-50. 被引量:1

二级参考文献15

共引文献39

同被引文献53

引证文献10

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部