期刊文献+

基于Web日志的隐私保护关联规则挖掘方法 被引量:2

Privacy Preserving Association Rule Mining Method Based on Web Logs
下载PDF
导出
摘要 电子商务网站用户的每次购物会话信息会被记录在Web服务器的日志中,分析这些日志并挖掘出购物篮商品间的强关联规则,可以主动为Web终端用户提供商品推荐,优化网站服务质量。鉴于原始用户会话信息及挖掘结果的隐私保护问题,提出了一种新的数据随机干扰处理方法,即结合列置换的伪列随机化回答方法,先对原始日志信息进行变化和隐藏,然后以此为基础,给出了一种基于位逻辑与操作的高效频繁项集生成算法,进而实现了原始信息及挖掘结果均获得隐私保护的网上购物篮问题的关联规则挖掘。实验结果表明,本方法具有很好的隐私保护性、高效准确性以及适用推广性。 Each visitor's shopping session of the E-Business Web site is recorded in the Web server log files. Analyzing the log files and exploring the strong regularities in the commodities of the shopping cart,can provide the recommended goods for Web users, and improve the performance of the Web service. In order to improve the privacy preservation of the original visitor's shopping information and mining result, an effective method for privacy preserving association rule mining was presented. First, a new data preprocessing approach, Fake Column's Randomized Response with Column Replacement (FCRRCR) was proposed to transform and hide the original data. Then, an effective privacy preserving association rule mining algorithm based on bit AND operation was presented. As shown in the experimental results, the algorithm can achieve significant improvements in terms of privacy, accuracy, efficiency and applicability.
作者 鲍钰 黄国兴
出处 《计算机科学》 CSCD 北大核心 2009年第8期220-223,共4页 Computer Science
基金 国家重点基础研究发展规划(973)项目(2005CB321904)资助
关键词 WEB日志 隐私保护 关联规则 随机化回答 Web logs, Privacy preservation, Association rule, Randomized response
  • 相关文献

参考文献12

  • 1Verykios V S, Bertino E, Fovino I N, et al. State-of-the-Art in privacy preserving data mining [J]. SIGMOD Record, 2004, 33 (1) :50-57. 被引量:1
  • 2Agrawal S, Krishnan V, Haritsa J R. On addressing efficiency concerns in privacy-preserving mining[C]// Lee Y J , Li J Z, Whang K Y,et al. ,eds. Proc. of the 9th Int'l Conf. on Database Systems for Advanced Applications. LNCS 2973. Jeju Island: Springer-Verlag, 2004 : 113-124. 被引量:1
  • 3Oliveira S R M, Za-ane O R. Privacy preserving frequent itemset mining[C]//Clifton C, Estivill-Castro V, eds. Proc. of the IEEE ICDM Workshop on Privacy, Security and Data Mining. Maebashi: Australian Computer Society, 2002 : 43-54. 被引量:1
  • 4Kantarcioglu M, Clifton C. Privacy-preserving distributed mining of association rules on horizontally partitioned data[J]. IEEE Trans. on Knowledge and Data Engineering, 2004,16(9) : 1026- 1037. 被引量:1
  • 5赵俊康著..统计调查中的抽样设计理论与方法[M].北京:中国统计出版社,2002:314.
  • 6Park J S, Chen M S, Yu P S. An effective hash based algorithm for mining association rules[A]//ACM SIGMOD International Conference Management of Data[C]. 1995:175-186. 被引量:1
  • 7Savasere A,Omiecinski E,Navathe S. An efficient algorithm for mining association rules in large database[A]//Proc, of 21 st Intl Conf. on Very Large DataBase [C]. Zurich, Swizerland, 1995: 432-443. 被引量:1
  • 8Pasquoier N, Bastide Y, TaouilL R, et al. Discovering frequent closed item sets for association rules[A]//CDTp99[C]. Israel, 1999: 398-416. 被引量:1
  • 9Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation[A]//Proceedings of the 2000 ACM SIGMOD Internal Conference on Management of Data[C]. Dallas, Texas: ACM Press,2000 : 1-12. 被引量:1
  • 10Pasquoer N, Bastide Y, Taouil R. Efficient mining of association rules using closed item set lattices [J]. Information System, 1999,24(1):25-46. 被引量:1

二级参考文献6

  • 1[1]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large database[C]. In: Proc. of the ACM SIGMOD Conference on Man agent of data, 1993,207-216. 被引量:1
  • 2[2]Pasquoer N, Bastide Y, Taouil R. Effictient mining of association rules using closed itemset lattices[J]. Information Systems, 1999,24(1): 25-46. 被引量:1
  • 3[3]Han Eui-hong, George Karypis & vipin Kumar. Scalable parallel data mining for mining association rules[J]. IEEE Trans. on Knowledge and Data Engineering, 2000, 12(3): 337-352. 被引量:1
  • 4[4]Zaki M J. Scalable Algorithms for association mining[J]. IEEE Trans. on Knowledge and Data Engineering,2000,12(3): 372-390. 被引量:1
  • 5[5]Fernando Berzal, Juan-Carlos Cubero, Nicolas Marin, TBAR: An efficient method for association rule mining in relational databases[J]. Data & Knowledge Engineering,2001,37, 47-64. 被引量:1
  • 6[6]Han Jia-wei, Micheline Kambr. Data mining concepts and techniques[M]. Beijing: Higher Education Press, 2001, 255-279 . 被引量:1

共引文献15

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部