期刊文献+

基于差分隐私与前缀树的搜索日志隐私保护研究 被引量:3

Differential Privacy and Prefix Tree Based Research for Search Log Privacy Protection
下载PDF
导出
摘要 针对搜索日志的发布泄露用户隐私的问题将差分隐私引入到搜索日志中,提出了一种满足ε-差分隐私的隐私保护策略算法,使得搜索日志中的隐私信息不被泄露.采用前缀树的思想对数据源预处理和剪枝,在所得结果中利用拉普拉斯机制添加噪声扰动真实结果,并通过理论证明该方法满足差分隐私保护.实验采用多机联机处理策略,大量缩短算法处理时间.通过实验结果分析,选取合适剪枝k阈值,使得发布数据在隐私保护度和数据准确率中达到平衡. The released search log may reveal the user' s privacy. This paper utilizes the differential privacy and prefix tree to protect the privacy of search log,and proposes an algorithm that satisfied ε-differential privacy to protect the privacy of search log. This paper adopts the idea of prefix tree to preprocess the data source. According to the built prefix tree,frequent items are found. Non-frequent items are pruned by setting different threshold values k. Laplace mechanism of differential privacy is used to protect the query results.Algorithms are used to satisfy the differential privacy protection by the theoretical proof. Experiments adopt the distributed processing strategy to reduce processing time greatly. Performance is evaluated to verify the feasibility of the algorithm. By selecting the appropriate threshold k,the Privacy Protection Level and Date Accurate Probability are balanced.
作者 陆叶 卢菁
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第3期540-544,共5页 Journal of Chinese Computer Systems
基金 上海市教育委员会科研创新项目(12YZ095)资助 教育部归国留学人员科研启动基金
关键词 搜索日志 隐私保护 差分隐私 前缀树 拉普拉斯机制 search log privacy protection differential privacy prefix tree Laplace mechanism
  • 相关文献

参考文献13

  • 1Sweeney L. K-anonymity:a model for protecting privacy [ J]. Inter- national Journal on Uncertainty, Fuzziness and Knowledge-based Systems ,2002,10(5 ) :557-570. 被引量:1
  • 2李杨,温雯,谢光强.差分隐私保护研究综述[J].计算机应用研究,2012,29(9):3201-3205. 被引量:40
  • 3Dwork C. Differentia/privacy: a survey of results [ C ]. Proceedings of the 5th International Conference on Theory and Applications of Model of Computation, Xi' an,2008 : 1-19. 被引量:1
  • 4Korolova A, Kenthapadi K,Nina M, et al. Releasing search queries and clicks privately[ C ]. Proceedings of the 18th International Con-ference on World Wide Web,2009:171-180. 被引量:1
  • 5Hong Yuan, Jaideep V, Lu Hai-bing, et al. Differentially private search log sanitization with optimal output utility [C ]. EDBT' 12 Proceedings of the 15th International Conference on Extending Da- tabase Technology, 2012 : 50-61. 被引量:1
  • 6王艳,乐嘉锦,孙捷,姜久雷.网络用户行为的隐私保护数据挖掘方法[J].计算机工程与应用,2012,48(13):138-143. 被引量:5
  • 7周水庚,李丰,陶宇飞,肖小奎.面向数据库应用的隐私保护研究综述[J].计算机学报,2009,32(5):847-861. 被引量:221
  • 8Dwork C ,McSherry F,Adam Smith. Calibrating noise to sensitivity in private data analysis[ C ]. Proceedings of the 3th Theory of Cryp- tography Conference (TCC) ,New York,USA,2006:363-385. 被引量:1
  • 9Chert R,Benjamin C M,BIPIN C D,et al. Differentially private transit data publication:a case study on the montreal transportation system [ C]. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Beijing,2012:213-221. 被引量:1
  • 10霍峥,孟小峰,黄毅.PrivateCheckIn:一种移动社交网络中的轨迹隐私保护方法[J].计算机学报,2013,36(4):716-726. 被引量:69

二级参考文献155

共引文献424

同被引文献27

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部