期刊文献+

数据发布中的隐私保护研究综述 被引量:14

Survey of study on privacy-preserving data publishing
下载PDF
导出
摘要 如何在发布涉及个人隐私的数据时保证敏感信息不泄露,同时又能最大程度地提高发布数据的效用,是隐私保护中面临的重大挑战。近年来国内外学者对数据发布中的隐私保护(privacy-preserving data publishing,PPDP)进行了大量研究,适时地对研究成果进行总结,能够明确研究方向。对数据发布领域的隐私保护成果进行了总结,介绍了常用的隐私保护模型和技术、隐私度量标准和算法,重点阐述了PPDP在不同场景中的应用,指出了PPDP可能的研究课题和应用前景。 When publishing the data set that is involved in personal privacy,the publisher should guarantee individual sensitive information security,simultaneously,as much as possible to improve the data usefulness and it is the great challenge in the privacy protection faces. In the recent years,the domestic and foreign scholars have conducted the extensive research. Carrying on the summary to the research results at the right moment,it can be clear about the research direction. This paper surveyed privacy protection achievements in the PPDP field,introduced the typical privacy protection model and technology, privacy metrics and algorithms. Focused on PPDP in different application scenarios,and pointed out that the PPDP possible research topics and application prospects.
出处 《计算机应用研究》 CSCD 北大核心 2010年第8期2822-2827,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(60773049) 江苏省科技创新资金资助项目(sbc20080655)
关键词 数据发布 隐私保护 匿名技术 信息度量 data publishing privacy preservation anonymity technology information metric
  • 相关文献

参考文献39

  • 1SWEENEY L.k-anonymity:a model for protecting privacy[J].International Journal on Uncertainty,Fuzziness and Knowledge-based Systems,2002,10(5):557-570. 被引量:1
  • 2SWEENEY L.Achieving k-anonymity privacy protection using genera-lization and suppression[J].International Journal on Uncertaint,Fuzziness and Knowledge-based Systems,2002,10(5):571-588. 被引量:1
  • 3WANG Ke,FUNG B C M.Anonymizing sequential releases[C] //Proc of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2006:414-423. 被引量:1
  • 4NERGIZ M E,CLIFTON C,NERGIZ A E.Multirelational k-anony-mity[J].IEEE Trans on Knowledge and Data Engineering,2009,21(8):1104-1117. 被引量:1
  • 5MACHANAVAJJHALA A,GEHRKE J,KIFER D,et al.l-diversity:privacy beyond k-anonymity[C] //Proc of the 22nd International Conference on Data Engineering.New York:ACM,2006:24-35. 被引量:1
  • 6LI Ning-hui,LI Tian-cheng,VENKATASUBRAMANIAN S.t-closeness:privacy beyond k-anonymity and l-diversity[C] //Proc of the 23rd International Conference on Data Engineering.Istanbul:IEEE Computer Society,2007:106-115. 被引量:1
  • 7WONG R C W,LI J Y,FU A W C,et al.(α,k)-anonymity:an enhanced k-anonymity model for privacy preserving data publishing[C] //Proc of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2006:754-759. 被引量:1
  • 8XIAO Xiao-kui,TAO Yu-fei.Personalized privacy preservation[C] //Proc of ACM SIGMOD Conference on Management of Data.Chicago:ACM,2006:229-240. 被引量:1
  • 9NERGIZ M E,ATZORI M,CLIFTON C W.Hiding the presence of individuals from shared databases[C] //Proc of ACM SIGMOD International Conference on Management.New York:ACM,2007:665-676. 被引量:1
  • 10BLUM A,LIGETT K,ROTH A.A learning theory approach to non-interactive database privacy[C] // Proc of the 40th Annual ACM Symposium on Theory of Computing.New York:ACM,2008:609-618. 被引量:1

二级参考文献122

共引文献284

同被引文献133

引证文献14

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部