期刊文献+

利用项集的分解寻求最大频繁项集

Mining Max Frequent Item Based on Itemset Decomposing
下载PDF
导出
摘要 寻求最大频繁项集是关联规则挖掘的最重要步骤,通过研究Apriori算法的基本思想,利用Apriori性质对数据库中项集进行分解直接寻找最大频繁项集,避免扫描整个事务数据库而是有针对性的扫描部分数据,从而提高算法效率。 The most important step of mining association rule is to find the max frequent item. Through analyzing the basic thought of Apriori, it can directly find the max frequent item by decomposing the itemsets. This new arithmetic avoid scanning the whole database, so that it can improve the efficiency of algorithm.
出处 《计算机与数字工程》 2007年第9期37-39,共3页 Computer & Digital Engineering
关键词 APRIORI算法 关联规则 最大频繁项集 分解项集 Apriori,association rule,max frequent item,itemset decomposing
  • 相关文献

参考文献8

二级参考文献22

  • 1[1]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large database[C]. In: Proc. of the ACM SIGMOD Conference on Man agent of data, 1993,207-216. 被引量:1
  • 2[2]Pasquoer N, Bastide Y, Taouil R. Effictient mining of association rules using closed itemset lattices[J]. Information Systems, 1999,24(1): 25-46. 被引量:1
  • 3[3]Han Eui-hong, George Karypis & vipin Kumar. Scalable parallel data mining for mining association rules[J]. IEEE Trans. on Knowledge and Data Engineering, 2000, 12(3): 337-352. 被引量:1
  • 4[4]Zaki M J. Scalable Algorithms for association mining[J]. IEEE Trans. on Knowledge and Data Engineering,2000,12(3): 372-390. 被引量:1
  • 5[5]Fernando Berzal, Juan-Carlos Cubero, Nicolas Marin, TBAR: An efficient method for association rule mining in relational databases[J]. Data & Knowledge Engineering,2001,37, 47-64. 被引量:1
  • 6[6]Han Jia-wei, Micheline Kambr. Data mining concepts and techniques[M]. Beijing: Higher Education Press, 2001, 255-279 . 被引量:1
  • 7何炎祥,武汉大学学报,1999年,45卷,5期,149~153页 被引量:1
  • 8R Agrawal,T Imielinski,A Swami.Mining Association Rules between Sets of Items in Large Databases[C].Proc.of the ACM SIGMOD Int.Conf.on Management of Data(ACM SIGMOD'93),Washington,USA,1993.207-216. 被引量:1
  • 9R Agrawal,R Srikant.Fast Algorithms for Mining Association Rules[C].Proc.of the 20th Int.Conf.on Very Large Databases(VLDB'94),Santiago,Chile,1994.487-499. 被引量:1
  • 10J S Park,M S Chen,P S Yu.An Effective Hash-based Algorithm for Mining Association Rules[C].Proc.of the ACM SIGMOD Int.Conf.on Management of Data (ACM SIGMOD'95),San Jose,California,1995.175-186. 被引量:1

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部