期刊文献+

常见关联规则算法分析与比较 被引量:6

Comparision and Analysis of Familiar Association Rules Algorithms
下载PDF
导出
摘要 介绍了常见的10种关联规则算法:AIS算法、SETM算法、Apriori算法等,并对各种算法的性能进行了分析比较.其中SETM算法效率最低,但和DBMS集成的最好,AVM算法效率最高,但只适用于布尔类型的关联规则. In this paper, ten familiar association rules algorithms are discussed which are AIS algorithm, SETM algorithm, Apriori algorithm etc. We compare and analyze their performance. Among all the algorithms, the most inefficient one is SETM algorithm but it is the most convenient one to combine DBMS. The most efficient one is AVM algorithm but it is only used in the association rules of boolean variable.
出处 《大连民族学院学报》 CAS 2005年第5期39-42,共4页 Journal of Dalian Nationalities University
关键词 数据挖掘 关联规则 频繁项集 算法 data mining association rules frequent itemset algorithm
  • 相关文献

参考文献6

二级参考文献17

  • 1[1]J.S.park,M.S.Chen,P.S.Yu.An efficientive Hash-based algo rithm for mining association rules[C].Processings of ACM SIG MOD,1995 24 (2):175~186 被引量:1
  • 2[2]Maurice Houtsma Arun Swami.Set-oriented mining of association rules [C].In int'l Conf.On Data Enginnering,Taibe,Taiwan.March 1995 被引量:1
  • 3[3]R.Agrawal,Tomasz Imielinski,Arun Swami.Mining association rules between sets of items in large databases [C].In Proc.Washington,D.C.Of the ACM SIGMOD Conference on Man agement of Data.may 1993 207~216. 被引量:1
  • 4[4]R.Agrawal,ramakrishnan Scrikant.Fast algorithms for mining association rules[C].In Proc.Of the 20th Iht' 1 coference on Very large databases,Santiago,Chile,Sept.,1994 487~499 被引量:1
  • 5A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. Proceedings of the 21st International Conferenc e on Very Large Database, p.p. 432 ~ 443, Sep. 1995. 被引量:1
  • 6Jiawei Han,Micheline Kamber. Data Mining:Concept and Techniques. Morgan Kaufmann publishers,inc.2000. 被引量:1
  • 7R. Agrawal, and R. Srikant. Fast algorithms for mining association rules in large database. Technical Report FJ9839, IBM Almaden Research Center, San Jose, CA, Jun. 1994. 被引量:1
  • 8J. S. Park, M. S. Chen, and P. S. Yu. Efficient parallel data mining of association rules. 4th International Conference on Information and Knowledge Management, Baltimore, Maryland, Nov. 1995. 被引量:1
  • 9R Agrawl,Srikant. Fast algorithm for mining association rules.In:Proc of Int' 1 Conf Very Large Database, Chile:Morgan Kaufmann, 1994,sep,487-499 被引量:1
  • 10S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data. In ACM SIGMOD International Conference On the Management of Data, p.p. 255 - 264, May 1997. 被引量:1

共引文献85

同被引文献46

引证文献6

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部