期刊文献+

关联规则挖掘Apriori算法的改进与实现 被引量:21

The Improving and Realizing of Association Rule Mining Apriori Algorithm
下载PDF
导出
摘要 Apriori算法是关联规则挖掘的一个经典算法,提高Apriori算法关联规则挖掘效率的关键是减少候选集的数量。通过分析、研究该算法的基本思想,文中提出利用Hash表存储技术对该算法进行改进,通过删除项Hash表来减少生成候选集的数量,从而提高算法的效率。实验结果表明,该改进算法能有效地提高关联规则挖掘的效率。 The Apriori algorithm is a classical algorithm of association rules mining. Reducing the number of candidate item sets is key to improve the efficiency of association rules mining. Studying the basic idea of Apriori algorithm, the algorithm by using Hash table technic is presented. The number of candidate item sets can be reduced by deleting Hash table of item in order to improve the efficiency of the Apriori algorithm. The results of experiment show that the improved algorithm is more efficient for association rules mining.
作者 陈文庆 许棠
出处 《微机发展》 2005年第8期155-157,共3页 Microcomputer Development
基金 广东省自然科学基金资助项目(04011427)
关键词 数据挖掘 关联规则 APRIORI算法 HASH表 data mining association rules Apriori algorithm Hash table
  • 相关文献

参考文献5

二级参考文献14

  • 1(美)希德曼 刘艺译.SQL Serve r2000数据挖掘技术指南[M].北京:清华大学出版社,2000-02.. 被引量:1
  • 2范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版社,2002.. 被引量:2
  • 3Han J,Kambr M. Data Mining:Concepts and Techniques[M]. Beijing: Higher Education Press,2001. 被引量:1
  • 4Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules Santiago, Chile: Proc. of the 20th Int'l Conference on Very Large Databases, 1994 : 487-499. 被引量:1
  • 5Park J S, Chen Mingsyan, Yu P S. An Effective Hash-based Algorithm for Mining Association Rules. San Jose, CA:Proc. of the ACM SIGMOD Intl Conf. on Management of Data, 1995:175-186. 被引量:1
  • 6范明 孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2001.. 被引量:64
  • 7Jiawei Han,Micheline Kamber. Data Mining:Concepts and Techniques.2001:225~244 被引量:1
  • 8Agrawal R,Imielinski T,Swami A.Mining Association Rules between Sets in Large Databases[C].In:Proceedings of the 1991 ACMSIGMOD International Conference on Management of Data:SIGMOD'93,New York:ACM Press, 1991:207~216 被引量:1
  • 9R Agrawal,R Srikant. Fast Algorithms for Mining Association Rules[J]. Business Intelligence, 1998:560~564 被引量:1
  • 10N Megiddo, R Srikant. Discovering Predictive Association Rules[C].In: Proc of the 4th Int'l Conference on Knowledge Discovery in Databases and Data Mining,New York,1998-08 被引量:1

共引文献79

同被引文献101

引证文献21

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部