期刊文献+

多传感器顺序统计量不敏概率数据互联算法

Multi-sensor Order Statistics Unscented Probabilistic Data Association Algorithm
下载PDF
导出
摘要 针对非线性系统中杂波环境下的多传感器多目标跟踪问题,提出了一种多传感器顺序统计量不敏概率数据互联算法(MSOSUPDA)。算法首先根据顺序结构多传感器系统实现方法将研究问题转化为顺序处理多个非线性单传感器多目标跟踪问题,然后结合顺序统计量概率数据互联(OSPDA)的思想将单个传感器的量测点迹与多个航迹互联,在此基础上采用不敏卡尔曼滤波(UKF)实现非线性条件下目标状态估计与协方差的递推。与MSJPDA/EKF算法相比,算法具有更高的跟踪精度和稳定性,计算量明显减小。仿真结果表明,该算该发散率与耗时分别为MSJPDA/EKF算法的19%与70%,算法综合性能明显好于MSJPDA/EKF算法。 A novel Multi-sensor Order Statistic Unscented Probabilistic Data Association Algorithm (MSOSUPDA) is proposed for the multi-sensor multi-target tracking problem of nonlinear system in clutter. In the new algorithm, the problem of interest is first translated into multiple nonlinear single-sensor multi-target tracking problems. Then, the association of measurements of single sensor to multiple tracks is implemented according to the principle of Order Statistics Probabilistic Data Association (OSPDA). Based on these, Unscented Kalman Filter (UKF) is used for the propagation of state distribution in nonlinear system and the MSOSUPDA is derived. Compared with the MSJPDA/EKF, the accuracy and robustness of MSOSUPDA are improved. Furthermore, computation complexity of the proposed algorithm is decreased obviously on account of the use of OSPDA. According to the simulation results, the divergence ratio and the processing time of our proposed algorithm are equal to 19 and 70 percent of the MSJPDA/EKF algorithm respectively.
出处 《光电工程》 CAS CSCD 北大核心 2009年第8期16-22,共7页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(60572161)
关键词 不敏卡尔曼滤波器 顺序统计量概率数据互联 多传感器 多目标跟踪 非线性 UKF order statistics probabilistic data association multi-sensor multi-target tracking nonlinearity
  • 相关文献

参考文献22

  • 1Bar-shalom Y. Multitarget-Multisensor Tracking: Advanced Appfication [M]. University of Connecticut: Artech House, 1990. 被引量:1
  • 2何友等著..多传感器信息融合及应用[M].北京:电子工业出版社,2000:336.
  • 3ZHANG Hong-mei, LIU Sheng, DU Chun-yang. A New Federated Filtering Method for Integrated Navigation of Vehicles [C]// Proceedings of IEEE International Conference on Meehatronics and Automation, Harbin, China, Aug 5-8, 2007:917-921. 被引量:1
  • 4熊伟,何友,张晶炜.多传感器多目标粒子滤波算法[J].光电工程,2005,32(4):1-4. 被引量:6
  • 5周宏仁等著..机动目标跟踪[M].北京:国防工业出版社,1991:366.
  • 6何友等编著..雷达数据处理及应用[M].北京:电子工业出版社,2006:267.
  • 7耿文东,刘红娅,王元钦,蔡庆宇.基于群目标的多目标关联算法研究[J].系统仿真学报,2007,19(15):3510-3512. 被引量:7
  • 8Bar-shalom Y, Fortmann T E. Tracking and Data Association [M]. New York: Academic press, 1988. 被引量:1
  • 9熊伟 ,张晶炜 ,何友 .修正的概率数据互联算法[J].海军航空工程学院学报,2004,19(3):309-311. 被引量:11
  • 10Pao L Y, Frei C W. A comparison of parallel and sequential implementations of a multisensor multitarget tracking algorithm [C]//Proeeedings of the American Control Conference, Seattle, WA, USA, June 21-23, 1995, 3:1683-1687. 被引量:1

二级参考文献54

  • 1沈宁,何友,王国宏.一种改进的精确最近邻PDA(IENNPDA)算法[J].现代雷达,1996,18(2):8-13. 被引量:6
  • 2丁振,张洪才,戴冠中.扩展概率数据关联新算法[J].西北工业大学学报,1996,14(1):49-53. 被引量:4
  • 3牛君,李贻斌.一种基于BFGS拟牛顿公式的运动目标跟踪方法[J].系统仿真学报,2007,19(1):13-15. 被引量:2
  • 4何友 等.多传感器信息融合中的分层估计[J].海军航空工程学院学报,1999,(2):101-107. 被引量:7
  • 5[2]Bar-shalom Y,Fortmann T E. Tracking and Data Association [M].New York:Academic press,1988 被引量:1
  • 6[4]Yaakov Bar-Shalom.Multitarget-Multisensor Tracking,Advanced Application[M].University of Connecticut,Artech House,1990:1-23 被引量:1
  • 7[5]Kirubarajan T,Bar-Shalom Y.IMM PDA for Radar Mangement and Tracking Benchmark with ECM[J].IEEE Transactions on Aerospace and Electronics, 1998:1115-1132 被引量:1
  • 8[6]Munir A,et al.Adaptive interacting multiple model algorithm for tracking a maneuvering target[J].IEEE Proc-F,1995,142(1):11-16 被引量:1
  • 9[7]Fortmann T E,Bar-Shalom Y,Scheffe M,Gelfand S.,Detection Thresholds for Multitarget Tracking in Clutter[A].//Proc.20th IEEE Conf.on Decision &Control[C].San Diego,CA,1981 被引量:1
  • 10[9]Birmiwal K,Bar-Shalom Y.Maneuver Target Tracking a Cluttered Environment with a Variable Dimension Filter [J].IEEE Trans.Aerospace & Electronic System,Vol.AES-20,September 1984:635-645 被引量:1

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部