期刊文献+

有色噪声下的不敏卡尔曼滤波器 被引量:11

Unscented Kalman Filter with Colored Noise
下载PDF
导出
摘要 有色噪声干扰情况下非线性系统的状态估计是许多实际工程需要解决的问题。通常的方法是利用扩展卡尔曼滤波方法将非线性系统线性化后,再利用线性系统的方法对有色噪声系统进行估计。然而,模型的线性化误差往往会严重影响最终的滤波精度,甚至导致滤波发散。为了避免此类误差,先通过对测量方程进行变换的方法,将观测方程的有色噪声转换为白噪声后,再利用不敏卡尔曼滤波方法,对系统的状态进行估计。虽然,该方法也需要对观测方程进行线性化,但是由于此线性化过程是在求解新量测方程的测量误差中进行,因此对系统的误差影响不是很大。仿真结果表明新方法能够有效地对有色噪声环境下系统的状态进行估计,性能要优于现有的一些基于EKF的方法。 In the real world, it is a common problem how to estimate the state of nonlinear systems with colored noise. The Extended Kalman Filter (EKF) is generally used to linearize the state or measure equations of the nonlinear system, and the linear method can be used. However, the performance of the EKF may not be always good due to the linearization error. In this paper, a new method is proposed. Firstly, the method transforms the measure equation of the system, so the colored noise of the equation can be changed into white noise. Then, the Unscented Kalman Filter (UKF) can be used to estimate the state of the system. Although, the linearization of the equations is also needed in this method, it will not affect the precision of the method, because the linearization is performed during the course of computing the error of the new measure equation. The results of the simulation show that the new method can effectively get the precision state estimation of the nonlinear system with colored nois.
出处 《电子与信息学报》 EI CSCD 北大核心 2007年第3期598-600,共3页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60172033) 全国优秀博士论文作者专项基金(2000036) 高校骨干教师基金(3240)资助课题
关键词 有色噪声 非线性 不敏卡尔曼滤波 状态估计 Colored noise Nonlinear Unscented Kalman Filter (UKF) State estimation
  • 相关文献

参考文献17

  • 1Bar-shalom Y and Fortmann T E.Tracking and Data Association.New York,Academic press,1988,Chapter 3. 被引量:1
  • 2Arthur G O,et al..Decentralized Estimation and Control for Multisensor Systems.CRC Press,1998,Chapter 2. 被引量:1
  • 3周宏仁等著..机动目标跟踪[M].北京:国防工业出版社,1991:366.
  • 4何友等著..多传感器信息融合及应用[M].北京:电子工业出版社,2000:336.
  • 5Zhou D H and Frank P M.Strong tracking filtering of nonlin-ear time-varying stochastic systems with coloured noise:Application to parameter estimation and empirical robust-nessanalysis.Int.J.Control,1996,65(2):295-307. 被引量:1
  • 6柯晶,钱积新.加性复合有色噪声干扰下的强跟踪滤波器[J].仪器仪表学报,2003,24(1):19-22. 被引量:11
  • 7Julier S J and Uhlmann J K.A new extension of the Kalman filter to nonlinear systems.SPIE,1997,3068:182~193. 被引量:1
  • 8Julier S J and Uhlmann J K.A new method for the nonlinear transformation of means and covariances in filters and estimators.IEEE Trans.on AC,2000,45(3):477~482. 被引量:1
  • 9Merwe R and E A Wan.Efficient derivative-free Kalman filters for online learning,In European Symposium on Artificial Neural Networks (ESANN),Bruges,Belgium,2001:205~210. 被引量:1
  • 10Joseph J and LaViola Jr.A comparison of unscented and extended Kalman filtering for estimating quaternion motion.In the Proceedings of the 2003 American Control Conference,Colorado,2003:2435~2440. 被引量:1

二级参考文献19

  • 1沈宁,何友,王国宏.一种改进的精确最近邻PDA(IENNPDA)算法[J].现代雷达,1996,18(2):8-13. 被引量:6
  • 2何友 等.多传感器信息融合中的分层估计[J].海军航空工程学院学报,1999,(2):101-107. 被引量:7
  • 3[2]Bar-shalom Y,Fortmann T E. Tracking and Data Association [M].New York:Academic press,1988 被引量:1
  • 4[4]Yaakov Bar-Shalom.Multitarget-Multisensor Tracking,Advanced Application[M].University of Connecticut,Artech House,1990:1-23 被引量:1
  • 5[5]Kirubarajan T,Bar-Shalom Y.IMM PDA for Radar Mangement and Tracking Benchmark with ECM[J].IEEE Transactions on Aerospace and Electronics, 1998:1115-1132 被引量:1
  • 6[6]Munir A,et al.Adaptive interacting multiple model algorithm for tracking a maneuvering target[J].IEEE Proc-F,1995,142(1):11-16 被引量:1
  • 7[7]Fortmann T E,Bar-Shalom Y,Scheffe M,Gelfand S.,Detection Thresholds for Multitarget Tracking in Clutter[A].//Proc.20th IEEE Conf.on Decision &Control[C].San Diego,CA,1981 被引量:1
  • 8[9]Birmiwal K,Bar-Shalom Y.Maneuver Target Tracking a Cluttered Environment with a Variable Dimension Filter [J].IEEE Trans.Aerospace & Electronic System,Vol.AES-20,September 1984:635-645 被引量:1
  • 9[10]Blom H A P.A Sophisticated Tracking Algorithm for ATC Surveillance Data[A].//Proc.International Radar Conf.[C].Paris,France,1984 被引量:1
  • 10[11]Fortmann T E,Bar-Shalom Y,Scheffe M,Gelfand S.Detection Thresholds for Tracking in Clutter-A Connection Between Estimation and Signal Processing[J].IEEE Trans.Automatic Control,Vol.AC-30,March 1985:221-228 被引量:1

共引文献47

同被引文献95

引证文献11

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部