期刊文献+

基于ARMA辨识的色噪系统状态参数鲁棒估计

Robust State Estimation for Systems with Colored Measurement Noise Based on ARMA Identification
下载PDF
导出
摘要 实际环境中观测系统的噪声,同时存在着白噪、色噪声和尖点噪声的影响。已有的研究都仅考虑白噪或色噪声,首次将实际系统中可能出现的所有噪声纳入观测方程,推导出统一的带白噪形式的观测方程。新观测方程在色噪声ARMA辨识基础上,可以直接用于传统的卡尔曼滤波算法,避免了扩维滤波。于是状态参数的稳健估计归结为ARMA参数的辨识。重点研究了自由参数选取与输入噪声之间的关系,将鲁棒支持向量回归机的优化问题转换成最大后验估计问题,为合理选择自由参数提供了理论依据。仿真结果验证了新算法的有效性。 In practical application, the observation systems is influenced by white noise, colored noise and outliers. Till now, most research considered the noise as white noise or colored noise respectively. In the paper, both of them are considered, a new measurement equation is derived by denoting the colored noise with white noise, and Kalman filtering model for systems with white noise and colored noise is presented in order to avoid complicated computation and expansion of the dimension of the filter. Hence, the state estimation can be interpreted into an equivalent ARMA identification problem. The dependency relationship between the parameter selection and input noise in robust SVR is studied using maximum a posteriori estimation. The simulation also shows that based on ARMA identification robust state estimation for systems with unstable and colored measurement noise performs well.
作者 王宏 李建勋
出处 《火力与指挥控制》 CSCD 北大核心 2013年第4期29-33,共5页 Fire Control & Command Control
基金 国家自然科学基金资助项目(61175008 60935001)
关键词 色噪声 支持向量机 ARMA辨识 鲁棒估计 colored noise SVR ARMA identification robust estimation
  • 相关文献

参考文献12

  • 1Simon D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches[ M ].New York: Wiley, 2006. 被引量:1
  • 2Nari T, Toshihiro F, Shigeo TSUJII. Robust Noise Suppression Algorithm with the Kalman Filter Theory for White and I Colored Disturbance [J ]. Ieice Transactions on Fundamentals of Electronics, Communications and Computer Sciences , 2008,91(3):818-829. 被引量:1
  • 3邓自立著..信息融合估计理论及其应用[M].北京:科学出版社,2012:482.
  • 4Xiong S S,Z Z Y,Z L M, et al.Adaptive Filtering of Color Noise Using the Kalman Filter Algorithm [C]//IEEE Instrumentation and Measurement Technology Conference,2002. 被引量:1
  • 5Cristianini N. Shavw-Tablor J. An Introduction to Support Vector Machines [ M ]. Cambridge: University Press, 2000. 被引量:1
  • 6Vapnik V. Statistical Learning Theory [ M ]. New York:Wiley, 1998. 被引量:1
  • 7Rojo-Alvarez, Jose L, Martinez-Ramon, et al. Support Vector Method for Robust ARMA System Identification [ J ]. IEEE Trans on Signal Processing, 2004,52( 1 ): 155-164. 被引量:1
  • 8Smola A J,Murata N, Scholkopf B, et al. Asymptotically Optimal Choice of -Loss for Support Vector Machines [ C ] //Proc of the Int Conf on Artificial Neural Networks, 1998. 被引量:1
  • 9James T K, Ivor W T.Linear Dependency between and the Input Noise in Support Vector Regression [J].IEEE Trans on Neural Networks, 2003,14(5): 544-553. 被引量:1
  • 10朱嘉钢,王士同.Huber-SVR中参数μ与输入噪声间关系的研究[J].复旦学报(自然科学版),2004,43(5):793-796. 被引量:6

二级参考文献16

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 2熊伟,陈立奎,何友,张晶炜.有色噪声下的不敏卡尔曼滤波器[J].电子与信息学报,2007,29(3):598-600. 被引量:11
  • 3Gao J B, Gunn S R, Ham's C J. A probabilistic framework for SVM regression and error bar estimation[J]. Machine Learning, 2002,46:71-89. 被引量:1
  • 4Kwok J T, Tsang I W. Linear dependency between and the input noise in -support vector regression[J]. IEEE Transaction on Neural Networks, 2003,14(3):544-53. 被引量:1
  • 5Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines[M]. Cambridge: Cambridge University Press, 2000. 被引量:1
  • 6Vapnik V. Statistical Learning Theory [M]. New York: Wiley, 1998. 被引量:1
  • 7Vladimir Cherkassky, Yunqian Ma. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks, 2003,17 (1) : 113-126. 被引量:1
  • 8Smola A J, Scholkopf B. A tutotial on support vector regression[R]. London: University of London, 1998. 被引量:1
  • 9Law M H, Kwok J T. Bayesian support vector regression [A]. Proc of the English Int Workshop on Artificial Intelligence and Statistics[C]. Florida: Key West,2001. 239-244. 被引量:1
  • 10Gao J B, Gunn S R, Ham's C J. A probabilistic framework for SVM regression and error bar estimation[J].Machine Learning, 2002,46 (2): 71-89. 被引量:1

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部