期刊文献+

正则蕴涵算子族G-λ-R_0及其三I支持算法 被引量:4

Regular family of implication operator and its fuzzy reasoning triple I sustaining method
下载PDF
导出
摘要 首先给出了一个新的蕴涵算子族:G-λ-R(0λ∈[0,1])(它包括G觟de(l简称RG)算子与R0算子)。然后重点讨论了G-λ-R0(λ∈[0,1])族算子的伴随算子及其正则性。结果表明,在该算子族中,每一个算子都具有伴随算子且具有正则性。从而说明了此算子是较理想的蕴涵算子。最后讨论了基于此蕴涵算子族的三I支持算法。 In the paper a regular family of fuzzy implication operator is given,which is denoted by G-A-Ro (λ ∈ [0,1]).Operator Godel (simple denoted Re) and operatorare R0 included in G-λ-Ro (λ ∈ [0,1]).The paper mainly discusses regularity of G-λ-R0 (λ ∈[0,1]) and the residual of G-λ-R0(λ ∈ [0,1]) with its t-norms.The result indicates that all operators in G-A-Ro(λ ∈ [0,1]) have residual t-norms and satisfy regularity.Consequently,the family of fuzzy implication operator is ideal.Finally,triple Ⅰ sustaining method with respect to FMP and FMT models are discussed.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第22期29-31,58,共4页 Computer Engineering and Applications
基金 教育部科学技术研究重点项目No.206089~~
关键词 蕴涵算子族G-λ-R0 伴随算子 正则性 三I支持算法 family of implication operator G-λ-Ro residual operators regularity triple Ⅰ sustaining method
  • 相关文献

参考文献7

二级参考文献12

共引文献126

同被引文献34

  • 1王琼,何一农,宋振明.基于剩余蕴涵的模糊三I方法的支持度[J].西南交通大学学报,2004,39(4):550-553. 被引量:13
  • 2Klement E P,Navara M.Propositional fuzzy logics based on Frank t-norms:A comparison[M]//Dubois D.Fuzzy Sets,Logics and Reasoning about Knowledge.[S.1.]:Kluwer Academic Publishers, 1999. 被引量:1
  • 3Whale T.Parameterized R-implications[J].Fuzzy Sets and Systems, 2003,134: 231-281. 被引量:1
  • 4Klement E P, Navara M.Propositional fuzzy logics based on Frank t- norms: A comparison[M]//Dubois D.Fuzzy Sets, Logics and Reasoning about Knowledge.[S.l.]: Kluwer Academic Publishers, 1999. 被引量:1
  • 5Whale T.Parameterized R-implications[J].Fuzzy Sets and Systems, 2003,134: 231-281. 被引量:1
  • 6Ying M S. Perturbation of fuzzy reasoning. IEEE Trans Fuzzy Syst, 1999, 7: 625-629. 被引量:1
  • 7Zadeh L A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cy B, 1973, 1 : 28-44. 被引量:1
  • 8Cai K Y. Robustness of fuzzy reasoning and δ-equalities of fuzzy sets. IEEE Trans Fuzzy Syst, 2001, 9: 738-750. 被引量:1
  • 9Li Y M, Li D C, W J J, et al. An approach of measure the robustness of fuzzy reasoning. Int J Intell Syst, 2005, 20: 393-413. 被引量:1
  • 10Li Y F, Qin K Y, He X X. Robustness of fuzzy connectives and fuzzy reasoning. Fuzzy Syst, 2013, 225: 93-105. 被引量:1

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部