摘要
首先给出了一个新的蕴涵算子族:G-λ-R(0λ∈[0,1])(它包括G觟de(l简称RG)算子与R0算子)。然后重点讨论了G-λ-R0(λ∈[0,1])族算子的伴随算子及其正则性。结果表明,在该算子族中,每一个算子都具有伴随算子且具有正则性。从而说明了此算子是较理想的蕴涵算子。最后讨论了基于此蕴涵算子族的三I支持算法。
In the paper a regular family of fuzzy implication operator is given,which is denoted by G-A-Ro (λ ∈ [0,1]).Operator Godel (simple denoted Re) and operatorare R0 included in G-λ-Ro (λ ∈ [0,1]).The paper mainly discusses regularity of G-λ-R0 (λ ∈[0,1]) and the residual of G-λ-R0(λ ∈ [0,1]) with its t-norms.The result indicates that all operators in G-A-Ro(λ ∈ [0,1]) have residual t-norms and satisfy regularity.Consequently,the family of fuzzy implication operator is ideal.Finally,triple Ⅰ sustaining method with respect to FMP and FMT models are discussed.
出处
《计算机工程与应用》
CSCD
北大核心
2009年第22期29-31,58,共4页
Computer Engineering and Applications
基金
教育部科学技术研究重点项目No.206089~~
关键词
蕴涵算子族G-λ-R0
伴随算子
正则性
三I支持算法
family of implication operator G-λ-Ro
residual operators
regularity
triple Ⅰ sustaining method