期刊文献+

广义摄动度及BKS推理方法的鲁棒性

Generalized perturbation degree and robustness of BKS reasoning method
下载PDF
导出
摘要 针对用于研究模糊推理鲁棒性的模糊集摄动程度概念不统一的状况,提出了广义摄动度的概念,使文献中出现的多个概念成为新概念的特殊情形。基于提出的广义摄动度概念,系统研究了一些常用蕴涵和模糊连接词的摄动程度,给出了常用蕴涵和模糊连接词的广义摄动度,并且得到基于五个模糊蕴涵的Bandler-Kohout Subproduct(BKS)推理方法的鲁棒性结果。 Aiming at the situation that the concept of fuzzy set perturbation degree used to study the robustness of fuzzy reasoning is not uniform, the concept of generalized perturbation is proposed, which makes the multiple concepts appearing in the literature become special cases of the new concept. Based on the proposed concept of generalized perturbation degree, the perturbation degree of some commonly used implications and fuzzy connection words are systematically studied. The generalized perturbation of common implications and fuzzy connection words are given, and the robustness of the Bandler-Kohout Subproduct(BKS) reasoning method based on five fuzzy implications is obtained.
作者 王媛媛 裴道武 WANG Yuanyuan;PEI Daowu((School of Sciences,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处 《浙江理工大学学报(自然科学版)》 2019年第2期255-261,共7页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金 国家自然科学基金项目(11171308,61379018,61472471)
关键词 模糊逻辑 模糊推理 摄动度 广义摄动度 BKS推理方法 鲁棒性 fuzzy logic fuzzy reasoning perturbation degree generalized perturbation degree BKS reasoning method robustness
  • 相关文献

参考文献1

二级参考文献15

  • 1Ying M S. Perturbation of fuzzy reasoning. IEEE Trans Fuzzy Syst, 1999, 7: 625-629. 被引量:1
  • 2Zadeh L A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cy B, 1973, 1 : 28-44. 被引量:1
  • 3Cai K Y. Robustness of fuzzy reasoning and δ-equalities of fuzzy sets. IEEE Trans Fuzzy Syst, 2001, 9: 738-750. 被引量:1
  • 4Li Y M, Li D C, W J J, et al. An approach of measure the robustness of fuzzy reasoning. Int J Intell Syst, 2005, 20: 393-413. 被引量:1
  • 5Li Y F, Qin K Y, He X X. Robustness of fuzzy connectives and fuzzy reasoning. Fuzzy Syst, 2013, 225: 93-105. 被引量:1
  • 6Dai S S, Pei D W, Wang S M. Perturbation of fuzzy sets and fuzzy reasoning based on normalized Minkowski distances. Fuzzy Syst, 2011, 189: 63-73. 被引量:1
  • 7Luo M X, Yao N. Triple I algorithms based on Schweizer-Sklar operators in fuzzy reasoning. Int J Approx Reason, 2013, 54: 640-652. 被引量:1
  • 8Jin J H, Li Y M, Li C Q. Robustness of fuzzy reasoniog via logically equivalence measure. Inform Sci, 2007, 177: 5103-5117. 被引量:1
  • 9Dai S S, Pei D W, Guo D H. Robustness analysis of full implication inference method. Int J Approx Reason, 2013, 54: 653-666. 被引量:1
  • 10Klement E P, Mesiar R, Pap E. Triangular Norms. Dordrecht: Kluwer Academic Publishers, 2000. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部