期刊文献+

带线性退化阻尼项的可压缩欧拉方程组的整体正规解(英文) 被引量:1

THE GLOBAL EXISTENCE OF THE REGULAR SOLUTIONS OF THE COMPRESSIBLE EULER EQUATIONS WITH DEGENERATE LINEAR DAMPING
下载PDF
导出
摘要 本文研究了理想气体的带线性退化阻尼项的可压缩欧拉方程组的真空初值问题.利用能量估计的方法,在适当的初始条件下,获得了初值问题的正无偏见解整体存在的结果.推广了可压缩等熵欧拉方程组的结果. The Cauehy problem of Euler equations with degenerate linear damping for a perfect gas is studied in this paper, while the initial gas lies in a compact domain. Under some hypotheses on the initial data, the regular solution can be extended globally by the method of energy estimates. These generalize the results of the isentropic Euler equations.
出处 《数学杂志》 CSCD 北大核心 2009年第4期401-408,共8页 Journal of Mathematics
基金 Supportedin part by National Natural Science Foundation of China (No.10661007) Natural Science Foundation of Jiangxi Province (No .2007GZS0811) Research Foundation of East China Jiaotong University
关键词 可压缩欧拉方程组 线性退化阻尼 正规解 整体存在性 Compressible Euler equations degenerate linear damping regular solution global existence
  • 相关文献

参考文献2

二级参考文献8

  • 1L Hsiao and T -P Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping[J]. Commun Math Phys , 1992, 143(3): 599-605. 被引量:1
  • 2K Nishihara, Convergence rates to nonlinear waves for solutions of system of hyperbolic conservation laws with damping[J]. J Differential Equations, 1996, 131(2): 171-188. 被引量:1
  • 3K Nishihara, W Wang and T Yang, L^P-convergence rate to nonlinear diffusion waves for p-system with damoing[J]. J Differential Equations, 2000, 161(1) : 191-218. 被引量:1
  • 4K Nishihara and T Yang, Boundary effect on asymptotic behavior of solutions to the p-system with linear damping[J]. J Differential Equations, 1999, 156(2): 439-458. 被引量:1
  • 5W Wang and T Yang, The pointwise estimates of solutions for Euler equation with damping in multi- dimensions[J]. J Differential Equations, 2001, 173(2) : 410-450. 被引量:1
  • 6A Matsumura and T Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids[J].Commun Math Phys , 1983, 89(4) : 445-464. 被引量:1
  • 7WANGWEIKE,YANGXIONGFENG.POINTWISE ESTIMATES OF SOLUTIONS TO CAUCHY PROBLEM FOR QUASILINEAR HYPERBOLIC SYSTEMS[J].Chinese Annals of Mathematics,Series B,2003,24(4):457-468. 被引量:3
  • 8Zhang Gui-zhou, Wang Wei-keSchool of Mathematic and Statistics, Wuhan University, Wuhan 430072, Hubei, China.Some Remarks on Euler Equations with Damping in Multi-Dimensions[J].Wuhan University Journal of Natural Sciences,2003,8(02A):331-334. 被引量:2

共引文献22

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部