期刊文献+

一维可压缩欧拉方程组解的爆破 被引量:3

Blowup of Solutions to the One-dimension Compressible Euler Equations
下载PDF
导出
摘要 在假设某些初始数据较大的条件下,研究由可压缩欧拉方程描述的多方气态理想流体。利用对称双曲型方程组解的存在性结论,将该方程组化为对称双曲型方程组,得到一维空间中可压缩欧拉方程的Cauchy问题的经典解关于时间的局部存在性;并通过构造适当的泛函,得到了其经典解在有限时间内必定发生爆破的结论。 The initial value problem for one-dimensional compressible Euler equations of a polytropie ideal fluid is investigated in this paper, the local existence of the classical solution for Cauchy problem is obtained by utilizing the theory of the Cauchy problem for quasilinear symmetric hyperbolic systems. Furthermore, by functional methods, the classical solution is proved to be blowed up in finite time provided some initial data is sufficiently large.
出处 《华东交通大学学报》 2009年第2期111-114,共4页 Journal of East China Jiaotong University
基金 国家自然科学基金项目(10661007) 江西省自然科学基金项目(2007GZS0811)
关键词 可压缩欧拉方程 爆破 泛函方法 the compressible Euler equations blowup functional methods
  • 相关文献

参考文献5

  • 1Serge A.Blow up for nonlinear hyperbolic equations[M].Boston:Brikhuser Press.1995. 被引量:1
  • 2Liu Taiping,Yang Tong.Compressible euler equations with vacuum[J].J D Equations,1997,140:223-237. 被引量:1
  • 3Sideris T C.Formation of singularities in three-dimensional compressible fluids[J].Commun Phys,1985,101:475-485. 被引量:1
  • 4Kato T.The Cauchy problem for quasi-linear symmetric hyperbolic systems[J].Arch Rational Mech Anal,1975,58:181-205. 被引量:1
  • 5Sideris T C.Formation of singularities of solutions to nonlinear hyperbolic equations[J].Arch Ration Mech Anal,1984,86(4):369-381. 被引量:1

同被引文献15

  • 1朱长江.Convergence rates to nonlinear diffusion waves for weak entropy solutions to p-system with damping[J].Science China Mathematics,2003,46(4):562-575. 被引量:8
  • 2ZHU XUSHENG,WANG WEIKE.THE REGULAR SOLUTIONS OF THE ISENTROPIC EULER EQUATIONS WITH DEGENERATE LINEAR DAMPING[J].Chinese Annals of Mathematics,Series B,2005,26(4):583-598. 被引量:18
  • 3ALI G,TORCICOLLO I.Global solutions to a hydrodynamical model for semiconductors in Lagrangian mass coordinates[EB/OL].[2010-01-15].http://www.na.iac.cnr.it/rapprti/2006/RT312-06.pdf,2006. 被引量:1
  • 4YING L A,WANG C H.Global solution of the cauchy problom for a nonhomogeneous quasilinear hyperbolic system[J].Comm Pure Appl Math,1980,33(5):579-597. 被引量:1
  • 5KATO T.The Cauchy problem for quasi-linear symmetric hyperbolic systems[J].Arch Rational Mech Anal,1975,58(3):181-205. 被引量:1
  • 6TETU MAKINO,KIYOSHI,MIZOHATA,SEIJI UKAI.The Global Weak Solutions of the Compressible Euler Equation with Spherical Symnetry[R].日本:数理解析研究所,1992:1-28. 被引量:1
  • 7DENIS SERRE.Systems of Conservation Laws[M].英国:剑桥大学出版社,2000:146-182. 被引量:1
  • 8KENJI NISHIHARA.Boundary Effect on Asymptotic Behavior of Solutions to the p-system with Linear Damping[R].日本:数理解析研究所,1999:78-94. 被引量:1
  • 9KENJI NISHIHARA.Lp-convergence Rate to Nonlinear Diffusion Wavea for p-system with Damping[R].日本:数理解析研究所,1999:95-113. 被引量:1
  • 10JIALE HUA,TDNG YANG.An improved convergence rate of Glimm scheme for general systems of hyperbolic conservation laws[J].Journal of Differential Equations,2006,231(1):92-107. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部