期刊文献+

基于神经网络的批强化学习在Robocup中的应用 被引量:3

Application of Batch Reinforcement Learning Based on NN to Robocup
下载PDF
导出
摘要 模拟机器人足球比赛(Robot World Cup,RoboCup)作为多智能体系统的一个通用的实验平台,通过它可以来检验各种理论、算法和框架等,已经成为人工智能的研究热点。针对在复杂条件下的使用传统Q学习方法所产生的收敛速度缓慢和泛化能力不强的问题,文中使用人工化能力,缩短了学习的时间。并最终将其运用到仿真组比赛的Keepaway模型中,以此验证了该方法的有效性。 As a representative experimental platform of multi - agent system, RoboCup(Robot World Cup) by which various theories, algorithms and architectures can be evaluated, has become the research center of artificial intelligence. For the converge slowly and time consuming problems arised when using the classic Q- learning method in complicated environment, ttse ANN to represent the Q net and the batch Q learning to process the training data gathered from the environment. By these tactics, improved the generalization capability of the system, and decreased the time cost to learn. It was applied to the experiment of the Keepaway models in the simulation team whose result shows the validity of the method.
出处 《计算机技术与发展》 2009年第7期98-101,共4页 Computer Technology and Development
基金 安徽省自然科学基金(050420204) 安徽省高校拔尖人才基金(05025102) 安徽省自然科学研究项目(2006KJ098B)
关键词 批Q-学习 神经网络 智能体 机器人足球比赛 batch Q-learning neural network agent RoboCup
  • 相关文献

参考文献9

  • 1Kok J R, Vlassis N. Sparse cooperative Q- leaming[C]// Greiner R.Schuurmans D. Proc. of the 21st Int. Cord. on Machine Learning. Banff, Alberto, Canada: ACM, 2004:481 - 488. 被引量:1
  • 2Stone P, Sutton R. Scaling reinforcement learning toward RoboCup soccer[C]//Pro. of the 18th International Conf on Machine Learning. Berkshire, Massachusers: ACM,2001. 被引量:1
  • 3Kadbling L P, Littman M L, Moore A W. Reinforcement leaming:A survey[J]. Journal of Artificial Intelliegence, 1996, 4: 237 - 285. 被引量:1
  • 4Sutton R S, Barto A G. Reinforcement Learning[M]. Cambridge,MA:The MIT Press, 1998. 被引量:1
  • 5Lin L J. Self- improving reactive agents based on reinforcement learning, planning and teaching[J ]. Machine Learning, 1992,8,293 - 321. 被引量:1
  • 6Tesauro G J. TD- gammon, a self- teaching back gammon program, achieves master- level play [ J ]. Neural Computation, 1994,6(2) :215 - 219. 被引量:1
  • 7马勇,李龙澍,李学俊.基于Q学习的Agent智能防守策略研究与应用[J].计算机技术与发展,2008,18(12):106-108. 被引量:6
  • 8Ernst D, Geurts P, Wehenkel L. Tree- based batch mode reinforcement learning[J]. J. Mach. Learn. Res., 2005,6: 503 - 556. 被引量:1
  • 9Stone P, Kuhlmann G, Taylor M E, et al. Kcepaway soccer: From machine learning testbed to benchmark [C] // RoboCup - 2005: Robor Soccer World Cup IX. New York:Springer- Verlag,2006: 93 - 105. 被引量:1

二级参考文献5

  • 1Stone P. Layered learning in Multi - Agent System[D]. Pittsburgh: Computer Science Department, Carnegie Mellon University, 1998. 被引量:1
  • 2Mihal B, Kay S, Jan W. Learning of kick in artificial soccer [ C]///Robot Soccer World Cup IV. Berlin: [ s. n. ], 2000. 被引量:1
  • 3Kaelbling LP, Littrnan M L, Moore A W. Reinforcement learning:A survey[J]. Journal of Artificial Intelliegence, 1996, 4:237 - 285. 被引量:1
  • 4Sutton R S, Barto A G. Reinforcement Learning[M]. Cambridge, MA: The MIT Press, 1998. 被引量:1
  • 5孟伟,洪炳熔,韩学东.强化学习在机器人足球比赛中的应用[J].计算机应用研究,2002,19(6):79-81. 被引量:11

共引文献5

同被引文献31

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部