期刊文献+

C5.0算法在RoboCup传球训练中的应用研究 被引量:11

Application of C5.0 Algorithm in Passing Ball Training of RoboCup
下载PDF
导出
摘要 针对于RoboCup比赛中出现的传球精度不够准确的问题,通过对决策树学习方法的探讨,该文提出了一种用于Robo-Cup仿真球队中Agent学习传球技能的一种决策树方法。将C5.0即ID3的改进算法应用到Agent传球能力的训练中,它使得Agent能够根据场上的具体情况,把球成功传给队友。Agent在得到球的控制权之后,首先确定传球成功率最大的球员,然后并不直接执行传球的动作,而是调整Agent自身的准备动作以达到传球的最佳状态,最后进行传球的行为。仿真结果表明,该方法有效地提高了Agent的传球能力。 The learning methods based on Decision Tree are discussed in order to solve the problem that passing ball in RoboCup games is not precise. A training algorithm for the "Passing Ball Ability" of the agents in the RoboCup Simulator League is presented in this paper. It makes agents determine that passing ball to which teammate is the best choice according to the current status in the field. When agent has controlled ball and determined to pass ball to which teammate, it does not pass ball right now, but it will adjust itself to reach the best condition in order to adapt the current situation. Finally it will do "passing ball" action. The results of the experiments have proved that this training algorithm really is good for passing ball.
出处 《计算机仿真》 CSCD 2006年第4期132-134,153,共4页 Computer Simulation
关键词 决策树 机器人世界杯足球锦标赛 传球 Decision tree RoboCup Passing ball
  • 相关文献

参考文献8

  • 1Peter Stone.Layered learning in Multi-agent Systems[D].ComputerScience Department,Carnegie Mellon University,Pittsburgh,PA.Dec,1998. 被引量:1
  • 2K Kostas,Hu Huosheng.Reinforcement Learning and Co-operation in a Simulated Multi-agent System[C].Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems,Japan:IEEE,1999.990-995. 被引量:1
  • 3K Endo,etal.Team Description for "DONGURI"[C].HiroKi K RoboCup-98:Robot Soccer WorldCup II,Berlin:Springer,1998,305-308. 被引量:1
  • 4Jinyi Yao,Jiang Chen,Zengqi Sun.An application in RoboCup combining Q-learning with Adversarial planning[D].Tsinghua University,2002. 被引量:1
  • 5杨增光,李龙澍.决策树学习在RoboCup仿真球队中的应用研究[J].系统仿真学报,2004,16(4):653-656. 被引量:6
  • 6J R Quinlan.Induction Decision Tree[J].Machine Learning,1986.81-106. 被引量:1
  • 7曲开社,成文丽,王俊红.ID3算法的一种改进算法[J].计算机工程与应用,2003,39(25):104-107. 被引量:79
  • 8Lewis Frey,Douglas Fisher.Identifying Markov Blankets with Decision Tree Induction[C].Proceedings of the Third IEEE international Conference on Data Mining (ICDM03),2003. 被引量:1

二级参考文献18

  • 1TomMMitchell 曾华军 张银奎 等.机器学习[M].北京:机械工业出版社,2002.38-59. 被引量:1
  • 2陆汝钤.人工智能[M].北京:科学出版社,2002.823-843. 被引量:3
  • 3R·格罗恩.数据挖掘一构筑企业竞争优势[M].西安:西安交通大学出版社,2001.. 被引量:1
  • 4Quinlan J R.Induction of decision tree[J].Machine Learning, 1986; (1): 81-106. 被引量:1
  • 5Quinlan J R.C4.5:Programs for Machine Learnint[M].Morgan Kaufmann,1992. 被引量:1
  • 6Quinlan J R.Discovering rules from large collections of examples:Acase study[C].In:Michie D,eds.Expert Systems in the Micro Electronic Age,Edinburgh University Press,1979. 被引量:1
  • 7Quinlan J R.Learning efficient classification procedures and their application to chess endgames[C].In:R S Michalski,J G Carbonell,T M Mitchell eds.Machine Learning:An Artificial Intelligence Approach, Tioga, 1983. 被引量:1
  • 8Quinlan J R.The effect of noise on concept learninl[C].In:R S Michalske,JG Carbonell,T M Mitchell eds.Machine Learning:An Artificial Intelligence Approach,Morgan Kaufmann,1986. 被引量:1
  • 9Quinlan J R.Simplifying Decision Trees[J].Intemet Journal of Man-Machine Studies, 1987;27:221-234. 被引量:1
  • 10Quinlan J R.Generating production rules from decision trees[C].In: Proceedings of IJCAI-87,Milan,Italy,1987. 被引量:1

共引文献83

同被引文献84

引证文献11

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部