期刊文献+

通过代理空间共享知识的Options学习

Options Learning through Agent-space Sharing Knowledge
下载PDF
导出
摘要 分层强化学习是为了解决强化学习"维数灾"的问题而提出的。Options的分层结构使Agent能更高效地完成学习任务,但通常Options的学习是在同一个状态空间的,Agent学习到的知识不能用于其他相似任务的状态空间。文章提出了迁移强化学习的框架,根据相关任务的一些共同特点,通过共享实现知识迁移;引入了代理空间的概念,该空间是相关任务的特征集,可以在以后的任务中重复利用。实验结果表明通过使用代理空间Options实现了知识迁移,显著提高了相关工作的性能。 Hierarchical reinforcement learning is put forward to solve reinforcement learning “curse of dimensionality” problem .The struture of Options makes agent complete tasks efficiently ,but usually the learning of Options is in the same state space ,and the knowledge Agent learned can not be used for other similar tasks .This paper presents the framework of transfer in reinforcement learning according to some common features of related tasks ,which helps achieve knowledge transfer .The concept of agent-space being introduced ,this space is a set of features of related tasks ,which can be reused in future tasks .Experimental results show that achieving knowledge transfer through agent-space improves the performance of related work significantly .
出处 《广东石油化工学院学报》 2014年第4期18-21,共4页 Journal of Guangdong University of Petrochemical Technology
基金 国家自然科学基金项目"云计算中虚拟机资源与应用系统参数的协同自适应配置研究"(61272382)
关键词 分层强化学习 代理空间 知识迁移 Hierarchical reinforcement learning Agent-space Knowledge transfer
  • 相关文献

参考文献8

  • 1Simsek O,Wolfe A, Barto A. Identifying useful subgoals in reinforcement learning by local graph partitioning[ C]//Proceedings of the Twenty- Second International Conference on Machine Learning. Bonn:ACM Press, 2005:816- 823. 被引量:1
  • 2Mehta N, Ray S, Tadepalli P, et al. Automatic discovery and transfer of MAXQ hierarchies[ C ]//Proceedings of the Twenty Fifth Interna- tional Conference on Machine Learning. Boston: ACM Press,2008 : 536 - 543. 被引量:1
  • 3Mannor S, Huan Xu. Distributionally robust Markov decision processes [ J ]. Mathematics of Operations Research, 2012, 37 (2) : 288 - 300. 被引量:1
  • 4Torrey L, Shavlik J. Policy Transfer via Markov logic networks[ C ]//Computer Scuences Department College of Letters and Science Uni- versity of Wisconsin. Madison: Computer Science Volume, 2010:234 - 248. 被引量:1
  • 5Pickett M. Using analogy discovery to create abstractions[ C]//SARA. Whistler: Universitat Trier, 2007:405- 406. 被引量:1
  • 6Ravindran B, Barto A. Relativized options:Choosing the right transformation[ C]//Proceedings of the Twentieth International Conference on Machine Learning. Washington: AAAI Press, 2003: 608 - 615. 被引量:1
  • 7Lazaric A, Restelli M, Bonarini A. Transfer of samples in batch reinforcement learning[ C ]//Proceedings of the 25th Annual ICML. Hel- sinki: IMLS Press, 2008 : 544 - 551. 被引量:1
  • 8Taylor M, Kuhlmann G, Stone P. Autonomous transfer for reinforcement learning[ C]//Proceedings of the Seventh International Confer- ence on Autonomous Agents and Multiagent Systems. Estoril: ATAL Press, 2008:283- 290. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部