期刊文献+

基于多尺度相位特征的图像检索方法 被引量:3

A Multi-scale Phase Feature Based Method for Image Retrieval
下载PDF
导出
摘要 在基于内容的图像检索中,一个关键的问题是图像视觉内容的表述。而传统的颜色,形状和纹理特征对于图像内容的表述尚且不够完备。为进一步提高检索准确率,针对人眼视觉特性,该文提出了一种基于多尺度相位特征的图像检索方法。该方法首先采用尺度空间理论得到图像的多尺度描述,然后通过复数可调滤波(complex steerable filtering)提取图像的多尺度相位信息并利用直方图投影获取全局统计的多尺度相位特征。在通用数据库COREL5000上的实验结果表明,该特征相对经典的颜色特征提高至少5%检索准确率,且能对之提供有效补充。 One related key issue in Content Based Image Retrieval (CBIR) is the representation of image visual content. However, traditional image features such as color, shape and texture are not capable of representing the visual content completely. So as to improve the retrieval accuracy, an image retrieval method based on Multi-scale Phase Feature (MPF) is proposed according to the human vision. Firstly, scale space theory is adopted here to decompose the image into Multi-scale Description (MD). And then the global statistical MPF is acquired by histogram projection from the muki-scale phase information, which is extracted by complex steerable filtering of MD. Finally, experiments on general purpose database COREL 5,000 demonstrate that the proposed MPF has a no less than 5% accuracy improvement over classic color features, and it also effectively complements classic color features.
作者 陈星星 张荣
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第5期1193-1196,共4页 Journal of Electronics & Information Technology
基金 教育部-微软重点实验室科研基金(05071802)资助课题
关键词 多尺度相位特征 尺度空间理论 复数可调滤波 图像检索 Multi-scale Phase Feature (MPF) Scale space theory Complex steerable filter Image retrieval
  • 相关文献

参考文献15

  • 1Datta R, Li Jia, and Wang J Z. Content-based image retrieval-approaches and trends of the new age [C]. Proceedings of ACM Multimedia Workshop on Multimedia Information Retrieval, Singapore, 2005: 253-262. 被引量:1
  • 2Smeulders A W M, Worring M, Santini S, and Gupta A, et al. Content-based image retrieval at the end of the early years [J] IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22(12): 1349-1380. 被引量:1
  • 3Nuno V. From pixels to semantic spaces: Advances in content-based image retrieval [J]. IEEE Computer, 2007, 40(7): 20-26. 被引量:1
  • 4Veltkamp R C, Tanase M. Content-based image retrieval systems: a survey [R/OL]. http://www.aa-lab.cs.uu.nl/ cbirsurvey/, 2000. 被引量:1
  • 5Flickner M, Sawhney H, and Niblack W, et al.. Query by image and video content: The QBIC system [J]. IEEE Computer, 1995, 28(9): 23-32. 被引量:1
  • 6Ma W Y and Manjunath B S. NeTra: A toolbox for navigating large image databases [C]. In: Proceedings of International Conference on Image Processing, Santa Barbara, CA, USA, 1997, 1: 568-571. 被引量:1
  • 7Pentland A, Picard R W, and Sclaroff S. Photobook Content-based manipulation of image databases [J] International Journal of Computer Vision, 1996, 18(3) 233-254. 被引量:1
  • 8Duygulu P and Barnard K. Object recognition as machine translation: learning a lexicon for a fixed image vocabulary [C]. Proceedings of Seventh European Conference on Computer Vision (ECCV), Euro, 2002, 4: 97-112. 被引量:1
  • 9Witkin A P. Scale space filtering [C]. Proceedings of 8th International Joint Conference Artificial Intelligence, Karlsruhe, Germany, 1983: 1019-1022. 被引量:1
  • 10Koenderink J J. The structure of images [J]. Biological Cybernetics, 1984, 50(5): 363-370. 被引量:1

同被引文献35

  • 1杨斌峰.地面测控雷达角度标校技术[J].现代电子技术,2005,28(17):47-49. 被引量:15
  • 2Datta R ,Joshi D, Li J, et al. Image retrieval : ideas, influen- ces, and trends of the new age [ J ]. ACM Computing Sur- veys ,2008,40(2) : 1-65. 被引量:1
  • 3Lowe D G. Distinctive image features from scale-invariant keypoints [ J ]. International Journal of Computer Vision, 2004,60(2) :91-110. 被引量:1
  • 4Zheng Qing-fang, Wang Wei-qiang, Gao Wen. Effective and efficient object-based image retrieval using visual phrases [C]//Proceedings of the 14th ACM International Confe- rence on Multimedia. Santa Barbara : ACM ,2006 :77- 80. 被引量:1
  • 5Philbin James, Chum Ondrej. Object retrieval with large vocabularies and fast spatial matching [ C ]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Minnesota: IEEE, 2007 : 1-8. 被引量:1
  • 6Wu Zhong, Ke Qi-fa. A multi-sample, multi-tree approach to bag-of-words image representation for image retrieval [ C] //Proceedings of 12th International Conference on Computer Vision. Kyoto: IEEE,2009 : 1992-1999. 被引量:1
  • 7Dietterich T G, Lathrop R H, Lozano-Perez T. Solving the multiple instance problem with axis-parallel rectangles [ J]. Artificial Intelligence, 1997,89(12) :31-71. 被引量:1
  • 8Zhang Qi, Sally A Goldman. Content-based image retrie- val using multiple-instance learning [ C] //Proceedings of the 19th International Conference on Machine Learning. Sydney : IMLS ,2002:682-689. 被引量:1
  • 9Rouhollah Rahmani, Sally A Goldman. Localized content- based image retrieval [ C ]//Proceedings of the 7th ACM SIGMM International Workshop on Multimeclia Informa- tion Retrieval. Singapore : ACM ,2005:227-236. 被引量:1
  • 10Chen Yi-xin, James Z Wang. Image categorization by learning and reasoning with regions [ J ]. Journal of Ma- chine Learning Research ,2004,5 (8) :913-939. 被引量:1

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部