期刊文献+

丰富图像标签的正则化非负矩阵分解方法 被引量:3

Regularized non-negative matrix factorization method for image tag enrichment
原文传递
导出
摘要 目的随着Web2.0技术的进步,以用户生成内容为中心的社交网站蓬勃发展,也使得基于图像标签的图像检索技术越来越重要。但是,由于用户标注时的随意性和个性化,导致用户提交的图像标签不够完备,降低了图像检索的准确性。方法针对这一问题,提出一种正则化的非负矩阵分解方法来丰富图像欠完备的标签,提高图像标签的完备性。利用非负矩阵分解的方法将原始的标签—图像矩阵投影到潜在的低秩空间里消除噪声,同时利用图像的类内视觉离散度作为正则化项提高消除噪声、丰富标签的效果。结果利用从社交网站Flickr上下载的大量社交图像进行对比实验,验证了本文方法对丰富图像标签的有效性。通过对比目前流行的优化算法,本文算法获得较高的性能提升,算法平均准确度提高了12.3%。结论将图像类内视觉离散度作为正则化项的非负矩阵分解算法,能较好地丰富社交图像的标签,解决网络图像标签的欠完备问题。 Objective With the development of Web 2. 0,social websites centered on user-generated content are arising.Therefore,tag-based image retrieval becomes more and more important. However,the image tags that users upload are incomplete because users label images freely and arbitrarily and thus decrease the performance of image retrieval. Method To solve the problem of image tag incompletion,this paper proposes an algorithm based on regularized non-negative matrix factorization to enrich the tags of social images and make these tags complete. This proposed algorithm casts the original tagimage matrix to a latent low-rank space and discovers the correlations between tags with the matrix factorization technique.The relationships among tags are utilized to enrich tags for social images. Meanwhile,the overall visual diversity as a regularization term is utilized to restrict the impact of content-irrelevant tags and enrich image tags. Result This paper constructs comparison experiments on images downloaded from sharing website Flickr. Accuracy is used to evaluate these comparison experiments. These experiments demonstrate the effectiveness of our proposed algorithm for enriching image tags. Compared with state-of-the-art approaches,our approach could improve average accuracy by 12. 3%. Conclusion This paper proposes a regularized non-negative matrix factorization framework with overall visual diversity as the regularization term and enriches the tags of images effectively. Our proposed algorithm can solve the problem of incomplete tags.
出处 《中国图象图形学报》 CSCD 北大核心 2014年第7期1112-1117,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(61075014) 西北工业大学博士创新基金项目(CX201113)
关键词 图像标签丰富 正则化 非负矩阵分解 投影梯度法 image tag enrichment regularization non-negative matrix factorization projected gradient method
  • 相关文献

参考文献14

  • 1刘颖,范九伦.基于内容的图像检索技术综述[J].西安邮电学院学报,2012,17(2):1-8. 被引量:20
  • 2贾君霞,王小鹏,任恩恩.基于全局特征的图像检索技术[J].自动化与仪器仪表,2011(1):101-103. 被引量:6
  • 3孙浩,王程,王润生.局部不变特征综述[J].中国图象图形学报,2011,16(2):141-151. 被引量:35
  • 4Halpin H, Robu V, Shepherd H. The complex dynamics of collaborative tagging[C]//Proceedings of the 16th International Conference on World Wide Web. Canada: ACM, 2007, 211-220.[DOI: 10.1145/1242572.1242602]. 被引量:1
  • 5Xia Z Q, Peng J Y, Feng X Y, et al. Social tag enrichment via automatic abstract tag refinement[C]//Proceedings of the 13th Pacific-rim Conference on Multimedia. Singapore: Springer Berlin Heidelberg, 2012, 198-209.[DOI: 10.1007/978-3-642-34778-8_18]. 被引量:1
  • 6Carneiro G, Chan A B, Moreno P J, et al. Supervised learning of semantic classes for image annotation and retrieval[J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 394-410.[DOI: 10.1109/TPAMI.2007.61]. 被引量:1
  • 7Jschke R, Marinho L, Hotho A, et al. Tag recommendations in folksonomies[C]//Knowledge Discovery in Databases: PKDD 2007. Poland: Springer Berlin Heidelberg, 2007, 506-514.[DOI: 10.1007/978-3-540-74976-9_52]. 被引量:1
  • 8Lee S, DeNeve W, Ro Y M. Tag refinement in an image folksonomy using visual similarity and tag co-occurrence statistics[J]. Signal Processing: Image Communication, 2010, 25(10):761-773.[DOI:10.1016/j.image.2010.10.002]. 被引量:1
  • 9Shen Y, Peng J Y, Feng X Y, et al. Multiple instance learning with missing object tags[C]//Proceedings of the 3rd International Conference on Internet Multimedia Computing and Service. Chengdu: ACM, 2011: 9-12.[DOI: 10.1145/2043674. 2043677]. 被引量:1
  • 10Wu L, Jin R, Jain A K. Tag completion for image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3):716-727.[DOI:10.1109/TPAMI.2012.124]. 被引量:1

二级参考文献101

  • 1陈卫刚,戚飞虎.可行方向算法与模拟退火结合的NMF特征提取方法[J].电子学报,2003,31(z1):2190-2193. 被引量:6
  • 2LlU Weixiang ZHENG Nanning YOU Qubo.Nonnegative matrix factorization and its applications in pattern recognition[J].Chinese Science Bulletin,2006,51(1):7-18. 被引量:22
  • 3Moravec H. Towards automatic visual obstacle avoidance[ C ]// Proceedings of International Joint Conference on Artificial Intelligence. New York, USA : ACM Press, 1977 : 584. 被引量:1
  • 4Tuytelaars T, Gool L V. Matching widely separated views based on affine invariant regions [ J]. International Journal of Computer Vision, 2004, 59(1): 61-85. 被引量:1
  • 5Schaffalitzky F, Zisserman A. Multi-view matching for unordered image sets [ C ]//Proceedings of the 7th European Conference on Computer Vision. Cambridge, MA, USA: MIT Press, 2002: 414-431. 被引量:1
  • 6Pritchett P, Zisserman A. Wide baseline stereo matching [ C ]// Proceedings of the 6th International Conference on Computer Vision. New York, USA: ACM Press, 1998:754-760. 被引量:1
  • 7Lowe D G. Object recognition [ C ]// Proceedings of the Computer Vision. New York, 1157. from local scale-invariant features 7th International Conference on USA: ACM Press, 1999: 1150-. 被引量:1
  • 8Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (4) : 509- 522. 被引量:1
  • 9Johnson A, Hebert M. Using spin images for efficient object recognition in cluttered 3D scenes [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999 ,21 (5) : 433- 449. 被引量:1
  • 10Obdrzalek S, Matas J. Object recognition using local affine frames on distinguished regions [ C ]//Proceedings of British Machine Vision Conference. Oxford, England: BMVA Press, 2002:113-122. 被引量:1

共引文献160

同被引文献9

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部