摘要
建立了初轧机系统的动力学方程,研究了系统在某个参数下的混沌运动,并得到了其分岔图、Poincaré截面图、相图和最大Lyapunov指数图。运用状态变量的1阶微分反馈法和延迟反馈控制两种方法实现了系统的混沌控制。这两种控制方法将混沌行为控制到周期状态,分别得出了受控系统在参数变化下的分岔图。由分岔图可以得到控制后的周期轨道的控制参数取值范围。
A dynamic model of the self-excited vibration in rolling mills is established in this paper. According to the bifurcation, phase portrait, Poincare portrait and Lyapunov exponent diagram, the chaos orbit is obtained for a certain parameter. Using two chaos controlling methods with first-order differential of state variable as feedback to realize chaos control and delayed feedback control, periodic orbits can be obtained, and the bifurcation diagrams are obtained for different parameters. The bifurcation diagram is plotted for the controlled system with the parameter. The range of the controlled parameter to stabilize a certain periodic orbit can be obtained through the bifurcation diagram. The periodic orbit can be stabilized with the oarameter.
出处
《机械科学与技术》
CSCD
北大核心
2009年第6期726-729,共4页
Mechanical Science and Technology for Aerospace Engineering
基金
国家自然科学基金项目(50475109
50474008
10572055)
甘肃省自然科学基金项目(0803RJZA012
3ZS062-B25-007)
兰州交通大学"青蓝"人才工程项目(QL-05-12A)资助