期刊文献+

改进的蚂蚁算法在几何约束求解中的应用 被引量:4

The Application of Improved Ant Algorithm in the Geometric Constraint Solving
下载PDF
导出
摘要 将几何约束问题转化为数值优化问题。把蚂蚁算法引入几何约束求解中。在所有的操作中,由于没有涉及到在 Newton-Raphson 中遇到的矩阵求逆操作,因此蚂蚁算法具有很强的鲁棒性。笔者在基本蚂蚁算中混入局部优化算法,对每代的最优解进行改进,进一步加快蚂蚁算法的收敛速度。为了避免蚂蚁一开始就失去解的多样性,笔者改进了选择策略。为了克服蚂蚁算法计算时间较长的缺陷,这里引入遗传算法中的变异算子,经过局部优化后,整个群体的性能会有明显改善,使得算法保持更好的多样性。由于该算法对方程的个数和变量的个数没有什么特殊的要求,因此可以处理欠约束问题。 We transform the geometric constraint solving into the numerical optimization solving. We introduce ant algorithm into the geometric constraint solving. Because in all the operating it isn’t related to the inversion of the matrix by Newton-Raphson method, the ant algorithm is robust. We interfuse local optimization algorithm in the basic ant algorithm and improve the best solution of every generation, so it can improve the convergence speed of the ant algorithm. In order to avoid the loss of diversity of the solutions from the beginning, we improve the choosing method. In order to avoid the shortage of the long time computing, we introduce the variance operator of the genetic algorithm. After local optimization, the character of the colony can be improved greatly and the algorithm can keep better diversity. Because this algorithm hasn’t special need to the number of the equations and the variables, we can deal with under-constraint problem.
出处 《工程图学学报》 CSCD 2004年第4期46-50,共5页 Journal of Engineering Graphics
基金 国家自然科学基金资助项目(69883004)
关键词 计算机应用 计算机辅助设计 蚂蚁算法 几何约束求解 computer application computer aided design ant algorithm geometric constraint solving
  • 相关文献

参考文献10

二级参考文献27

  • 1[1]Colorni A.Distributed optimization by ant coloni es[R].Proc.of 1st European Conf.Artificial Life. 被引量:1
  • 2[2]Dorigo M,Gianni Di Caro,Thomas Stutzle.Ant algorithms[J].Fut ure Generation Compuer System,2000,16:5-7. 被引量:1
  • 3[3]Dorigo M Luca,Maria Gamberdella.Ant colony for the traveling s alesman problem[R].TR,IRIDIA,1996. 被引量:1
  • 4[4]Dorigo M,Vittorio Maniezzo,Alberto Colorni.The Ant System:optim ization by a colony of cooperating agents[J].IEEE Transactions on systems,Man, and Cybernetics_Part B,1996,26(1):1-13. 被引量:1
  • 5[5]Thomas Stützle,Holger H Hoos.MAX-MIN Ant System[J].Futur e Generation Computer System,2000,16:889-914. 被引量:1
  • 6[6]Dorigo M.Heuristic from nature for hard combinatorial optimizat ion problems[J].International Transactions in operational research.,3(1):1-2 1. 被引量:1
  • 7[7]Gambardella L M,Taillard E D,Dorigo M.Ant colonies for the qua dratic assignment problem[J].Journal of the Operational Research Society 1999 ,50(2):167-176. 被引量:1
  • 8[8]Gambardella,Luca Maria,Dorigo M.Solving symmetric and asymmetr ic TSPs by and colonies[R].Proceedings of the IEEE Conference on Evolutionary Computation 1996,137-142. 被引量:1
  • 9[9]Dorigo M,Luca Maria Gamberdella.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem[R].TR,IRIDIA,1996. 被引量:1
  • 10[10]Walter J,Gutjahr.AGraph_based Ant System and its convergence[ J]:Future Generation Computer System,2000,16:837-888. 被引量:1

共引文献111

同被引文献33

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部