期刊文献+

含时变啮合刚度的间隙非线性齿轮系统的混沌控制 被引量:9

Chaos Control of a Nonliner Gear System with Clearance and Time-varying Stiffness
下载PDF
导出
摘要 基于含时变啮合刚度和间隙非线性单级齿轮系统的动力学模型,分析了系统响应的动态特性。针对系统在部分参数区域发生的混沌运动,运用OGY控制原理,以混沌吸引子内部不稳定周期轨道为目标,通过对系统的外激励参数实施连续的小扰动,使系统的轨道始终落在未加扰动的鞍点轨道的稳定流形上,从而实现了系统运动的稳定化。 Based on the nonlinear dynamic model of a single freedom gear system with clearance and timevarying mesh stiffness, the influence of the stiffness on the dynamics response of the gear system was analyzed. In view of the fact that chaotic motions happen in some parametric regions of the system, the OGY (Ott, Grebogi and Yorke ) chaos control principle was used to stabilize the unstable periodic orbits embedded in a chaotic attractor by making continuous perturbation of the external excitation parameters of the system. In this way the orbit of the system is always along the stable stream shape of an unperturbed orbit.
出处 《机械科学与技术》 CSCD 北大核心 2006年第9期1035-1037,共3页 Mechanical Science and Technology for Aerospace Engineering
关键词 齿轮系统 时变刚度 混沌控制 周期轨道 OGY方法 gear system time-varying stiffness chaos control periodic orbit OGY method
  • 相关文献

参考文献10

  • 1李润方,王建军编著..齿轮系统动力学 振动、冲击、噪声[M].北京:科学出版社,1997:474.
  • 2Kahraman A,Singh R.Nonlinear dynamics of a spur gear pair[J].Journal of Sound and Vibration,1990,142:383 ~411 被引量:1
  • 3Kahraman A,Singh R.Nonlinear dynamics of a geared rotorbearing system with multiple clearances[J].Journal of Sound and Vibration,1991,144(3):469~5064 被引量:1
  • 4刘梦军,沈允文,董海军.单级齿轮非线性系统吸引子的数值特性研究[J].机械工程学报,2003,39(10):111-116. 被引量:22
  • 5胡岗,萧静华.混沌控制[M].上海:科技教育出版社,2002 被引量:1
  • 6刘秉正,彭建华编著..非线性动力学[M].北京:高等教育出版社,2004:589.
  • 7Ott E,et al.Controlling chaos[J].Physical Review Letters,1990,64(11):1196 ~1199 被引量:1
  • 8刘晓宁,沈允文,王三民,郜志英.基于OGY方法的间隙非线性齿轮系统混沌控制[J].机械工程学报,2005,41(11):26-31. 被引量:11
  • 9Parker T S,Chua L O.Practical Numerical Algorithms for Chaotic Systems[M].Springer,New York,1992 被引量:1
  • 10胡海岩编著..应用非线性动力学[M].北京:航空工业出版社,2000:249.

二级参考文献19

  • 1Kahraman A, Singh R. Nonlinear dynamics of a geared rotor-bearing system with multiple clearances. Journal of Sound and Vibration, 1991, 144(3): 469~506. 被引量:1
  • 2Kahraman A, Singh R. Nonlinear dynamics of a spur gear pair. Journal of Sound and Vibration, 1990, 142(3): 383~411. 被引量:1
  • 3Blankenship G W, Kahraman A. Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type nonlinearity. Journal of Sound and Vibration, 1995, 185(5): 743~765. 被引量:1
  • 4Raghothama A, Narayaman S. Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method. Journal of Sound and Vibration, 1999,226(3): 469~492. 被引量:1
  • 5Lin J, Parker R G. Mesh stiffness variation instabilities in two-stage gear system. Transactions of the ASME, Journal of Vibration and Acoustics, 2002, 124(1): 68~76. 被引量:1
  • 6Kahraman A, Singh R. Nonlinear dynamics of a spur gear pair. Journal of Sound and Vibration, 1990, 142: 383 ~411. 被引量:1
  • 7Kahraman A, Singh R. Nonlinear dynamics of a geared rotor-bearing system with multiple clearances. Journal of Sound and Vibration, 1991,144(3): 469~506. 被引量:1
  • 8Raghothama A, Narayaman S. Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method. Journal of Sound and Vibration, 1999,226(3): 469~492. 被引量:1
  • 9Edward O, Celso G, James A Y. Controlling chaos.Physical Review Letters, 1990, 64(11): 1 196~1 199. 被引量:1
  • 10Boccaletti S, Celso G, Lai Y C, et al. The control of chaos: theory and applications. Physics Reports, 2000,329: 103~197. 被引量:1

共引文献29

同被引文献71

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部