摘要
文章利用循环矩阵的性质,获得循环图G(n;±S)=(V,E)的特征值λr=sum from j=1 to n ajω(j-1)r,r=0,1,…,n-1。其中ω=cos2π/n+isin2π/n。并且循环图及其补图的拉普拉斯矩阵的谱sum from j=1 to n aj-sum from j=1 to n ajω(j-1)r,n-sum from j=1 to n ajω(j-1)r。
With the characteristics of a circulant matrix, the paper obtains that the spectra of a circulant graphG(n; ±S) = ( V,E) are λr=∑j=1^najω^(j-1)r,r=0,1…,n-1.for ω=cos2π/n+isin2π/n.And that the Laplacian spectra of circulant graph and its complement are ∑j=1^n aj-∑j=1^n ajω^(j-1)r,n-∑j=1^n ajω^(j-1)r.
出处
《四川理工学院学报(自然科学版)》
CAS
2009年第2期1-2,共2页
Journal of Sichuan University of Science & Engineering(Natural Science Edition)
关键词
邻接矩阵
拉普拉斯矩阵
特征值
循环图
adjacent matrix
Laplacian matrix
eigenvalue
circulant graph