摘要
图G的特征值是图的一个重要不变量。在量子化学和理论化学中有大量的应用。当图G的顶点数较大时,其邻接矩阵的阶数较大,计算特征值较困难。分块降阶是通常的方法。本文针对一些特殊图的邻接矩阵进行分块降阶求特征值。如果在V(G)上有一个一一映射φ,使得φ(vi)=vn-i+1,i=1,2,…,n,那么G的点v1仅与G的点v1重合的图G+G的特征值中有G-V1的特征值。
Abstract: Eigenvalues of graphs are important invariants which have numerous applications in quantum chemistry and theoretical chemistry. The order of adjacency matrix increases when the vertex of the graph is bigger, and it is difficult to calculate the eigenvalues. This paper calculates the eigenvalues of some special graphs by componently reducing their adjacent matrix. If there is a mapping at ,let , , there exists the eigenvalue among the eigenvalues of the , in which of G only superposes another of G.
出处
《绵阳师范学院学报》
2007年第11期14-17,共4页
Journal of Mianyang Teachers' College
关键词
邻接矩阵
特征值
映射
adjacent matrix
eigenvalue
mapping