期刊文献+

一种基于奇异值分解的非线性滤波新算法 被引量:9

New Nonlinear Filtering Algorithm Based on SVD
下载PDF
导出
摘要 提出一种基于奇异值分解的无导数卡尔曼非线性滤波新算法,对UKF算法进行改进。该算法利用奇异值分解作为工具,将原算法中的协方差矩阵进行奇异值分解,可以在一定程度上避免在递推过程中,由于计算误差和舍入误差而引起的协方差矩阵失去正定性,从而导致算法失效的问题。在不降低滤波精度,不增加算法复杂度的前提下,新算法具有很好的数值稳定性。实例仿真结果验证了本方法的有效性。 A derivative-free Kalman filter method based on the singular value decomposition (SVD) was proposed to improve numerical stability of unscented Kalmanfilter (UKF) algorithm. This method based on UKF framework used SVD technique to decompose the covariance matrix in the original method. The new method succeeds in avoiding the invalidation caused by errors during computation. It has excellent numerical stability without filtering precision degradation and computation complexity increase. A typical numerical example demonstrates the performance of the method. Simulation results demonstrate the validity of the proposed approach further.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第9期2650-2653,共4页 Journal of System Simulation
关键词 非线性滤波 奇异值分解 数值稳定性 无迹卡尔曼滤波 nonlinear filtering singular value decomposition numerical stability unscented Kalman filter
  • 相关文献

参考文献11

  • 1周战馨,高亚楠,陈家斌.基于无轨迹卡尔曼滤波的大失准角INS初始对准[J].系统仿真学报,2006,18(1):173-175. 被引量:24
  • 2NФrgaard M, Poulsen N K, Ravn O. New Developments in State Estimation for Nonlinear Systems [J]. Automatica (S0005-1098), 2000, 36(11): 1627-1638. 被引量:1
  • 3Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation [M]. New York, USA: John Wiley & Sons, Inc, 2001. 被引量:1
  • 4M Pachter, P R Chandler. Universal Linearization Concept for Extended Kalman Filters [J]. IEEE Trans on Aerospace and Electronic System (S0018-9251), 1993, 29(3): 946-961. 被引量:1
  • 5S Julier, J K Uhlmann, H F Durrant-Whyte. A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators [J]. IEEE Transactions on Automatic Control (S0018-9268), 2000, 45(3): 477-482. 被引量:1
  • 6S. Julier, J K Uhlmann. Unscented Filter and Nonlinear Estimation [J]. Proceeding of the IEEE (S0018-9219), 2004, 92(3): 401-422. 被引量:1
  • 7武元新..对偶四元数导航算法与非线性高斯滤波研究[D].国防科学技术大学,2005:
  • 8R van der Merwe, E Wan. The Square-root Unscented Kalman Filter for State and Parameter Estimation [C]//Proc. ICASSP' 01. 2001: 3461-3464. 被引量:1
  • 9Eric A Wan, Rudolph van der Menve. The Unscented Kalman filter for Nonlinear Estimation [C]// Adaptive Systems for Signal Processing, Communications, and Control Symposium'2000. Lake Louise, Aita, Canada: IEEE Press, 2000: 153-158. 被引量:1
  • 10王志胜,刘元祥,王道波.一种无矩阵求逆的最优滤波计算方法[J].计算技术与自动化,2004,23(3):27-31. 被引量:5

二级参考文献18

  • 1Scherzinger B M.Inertial navigation error models for large heading uncertainty[C]//Proceedings of Position Location and Navigation Symposium.Altanta:IEEE,1996.477-484. 被引量:1
  • 2Dmitriyev S P,Stepanov O A,Shepel S V.Nonlinear filtering methods application in INS alignment [J].IEEE Transactions on Aerospace and Electronic System.St.Petersburg:IEEE,1997,AES-33(1):260-272. 被引量:1
  • 3Kong Xiaoying,Nebot E M,Durrant-Whyte H.Development of a non-linear psi-angle model for large misalignment errors and its application in INS alignment and calibration [C]//International Conference on Robotics & Automation IEEE.Detroit:IEEE,1999. 被引量:1
  • 4Julier S,Uhlmann J and Durrant-Whyte H F.A New Method for the Nonlinear Transformation of Means and Covariances IN Filters and Estimatiors [J].IEEE Transactions on Automatic Control,Jefferson:IEEE,2000,45(3):477-482. 被引量:1
  • 5Haykin S.自适应滤波器原理[M].北京:电子工业出版社.2003.613-617. 被引量:1
  • 6Carlson, N.A.. Fast Triangular Factorization of Square Root Filter[J].AIAA J. 1973, 11(9):1259~1265. 被引量:1
  • 7Kaminski, P.G., Bryson, A.E. and Schmidt, S.F.. Discrete Square Root Filtering: A Survey of Current Techniques[J].IEEE Trans. Automat. Contr. ,1971, AC-16(6):727~735. 被引量:1
  • 8Bierman, G.J.. Measurement Updating Using the U-D Factorization[J].Automatica, 1976, 12:375~382. 被引量:1
  • 9Thornton, C.L. and Bierman, G.J.. Gram-Schmidt Algorithms for Covariance Propagation[J].Int. J. Contr. ,1977, 25(2):243~260. 被引量:1
  • 10Oshman, Y.. Gain-Free Square Root Information Filtering Using the Spectral Decomposition[J].J. Guid. ,Contr. ,and Dynamics, 1989, 12(5):681~690. 被引量:1

共引文献27

同被引文献150

引证文献9

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部