期刊文献+

基于遗传算法的奇异值分解信号去噪算法 被引量:7

Singular value decomposition signal de-noising algorithm based on genetic algorithm
下载PDF
导出
摘要 针对奇异值分解信号降噪方法中吸引子轨迹矩阵(Hankel矩阵)结构的确定,以及有效奇异值的选择两个关键问题,提出了一种基于遗传算法的奇异值分解信号去噪算法。首先,利用原始信号构造Hankel矩阵,运用遗传算法对矩阵结构进行优化,然后对含噪声信息的矩阵进行奇异值分解,最后通过K-medoids聚类算法确定有效奇异值个数,对有效奇异值和其对应的向量进行奇异值分解反变换,还原原始信号,达到去噪目的。通过仿真实验并与小波包变换、小波变换以及传统快速傅氏变换(FFT)去噪方法相比较,结果表明该算法具有良好的去噪效果。 For singular value decomposition signal de-noising algorithm, the method of confirming the structure of attractor trajectory matrix (Hankel matrix) and the way to ascertain effective singular values both are key problems. In order to solve these two problems, this paper proposed a singular value decomposition signal de-noising algorithm based on genetic algorithm. Firstly, this algorithm constructed a Hankel matrix with the original signal, and utihzed GA to optimize the matrix structure. Then it conducted singular value decomposition transformation on the matrix. Finally, it worked out the number of useful singnlar values by K-medoids clustering algorithm, and reconstructed the signal with the method of conducting inverse singular value decomposition transformation on the values and their corresponding vectors to achieve the purpose of signal de-noising. Through simulation experiments, comparing the in this paper proposed algorithm with wavelet packet transform, wavelet transform and traditional fast Fourier transformation (FFT) signal de-noising algorithm, it shows that the algorithm here has a positive effect on signal de-noising.
出处 《计算机应用研究》 CSCD 北大核心 2015年第8期2281-2285,共5页 Application Research of Computers
基金 河北省自然科学基金资助项目(F2014502050) 中央高校基本科研业务费专项资金资助项目(2014MS127)
关键词 遗传算法 奇异值分解 K-medoids聚类算法 有效奇异值 信号去噪 genetic algorithm singular value decomposition K-medoids clustering algorithm effective singular values signal de-noising
  • 相关文献

参考文献21

二级参考文献148

共引文献404

同被引文献88

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部