期刊文献+

基于奇异值分解的铣削力信号处理与铣床状态信息分离 被引量:35

PROCESSING OF MILLING FORCE SIGNAL AND ISOLATION OF STATE INFORMATION OF MILLING MACHINE BASED ON SINGULAR VALUE DECOMPOSITION
下载PDF
导出
摘要 利用连续截断信号构造矩阵,通过奇异值分解可以将信号表示为一系列分量信号的简单线性叠加,证明了各分量之间是两两正交的,且具有零相位偏移特性。根据分量信号的信息量可以确定合理的矩阵结构。对铣削力信号的处理实例表明,奇异值分解方法分离出机床主轴旋转基频近乎完整的时域波形,分辨出两个频率很接近的信号分量,发现信号中隐藏的调幅现象,证实机床的爬行并确定爬行频率。最后与小波变换的结果进行比较,表明这一方法对铣削力信号的分离效果优于小波变换。 A signal can be decomposed into the linear sum of series of component signals by singular value decomposition (SVD) when matrix is created by continuously intercepting signal. It's proved that these component signals are orthogonal each other and have characteristic of zero-phase shift. Matrix structure can be rationally determined according to information amount of component signals. Then this SVD method is applied to the processing of a milling force signal and the results show that waveform of fundamental frequency of principal axis of milling machine is isolated completely and two component signals, whose frequencies are very close, are also isolated. Furthermore, the phenomenon of amplitude modulation hidden in this signal is discovered, the crawl of milling machine is confirmed and crawl frequency is got. The results compared with wavelet transform show that for this milling force signal, the SVD method has the much better effect of signal isolation than wavelet transform.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2007年第6期169-174,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(50305005)
关键词 奇异值分解 矩阵构造 铣削力信号 信号分离 Singular value decomposition Matrix creation Milling force signal Signal isolation
  • 相关文献

参考文献10

二级参考文献21

  • 1[1]Mcfadden P D.Detecting fatigue cracks in gear by amplitude and phase demodulation of meshing vibration.ASME Journal of Vibration,Acoustics,Stress,and Reliability in Design,1986,108(2): 165~170 被引量:1
  • 2[2]Mcfadden P D.Interpolation technique for time domain averaging of gear vibration.Mechanical Systems and Signal Processing,1989,3(1): 87~97 被引量:1
  • 3[3]Liu H X,Zuo H F,Jiang C Y,et al.An improved algorithm for direct time-domain averaging.Mechanical Systems and Signal Processing,2000,12 (2): 279~285 被引量:1
  • 4[4]Staszewski W J,Tomlinson G R.Application of the wavelet transform to fault detection in a spur gear.Mechanical Systems and Signal Processing,1994,8(2): 289~307 被引量:1
  • 5[5]Dalpiaz G,Rivola A,Rubini R.Effectiveness and sensitivity of vibration processing techniques for local fault detection in gears.Mechanical Systems and Signal Processing,2000,14 (3): 387~412 被引量:1
  • 6[6]Kanjilal P P,Palit Sarbani,Goutam.Fetal ECG extraction from single-channel maternal ECG using singular value decomposition.IEEE Trans.on Biomedical Engineering,1997,44(1): 51~59 被引量:1
  • 7[7]Kanjilal P P,Palit Sarbani.On multiple pattern extraction using singular value decomposition.IEEE Trans.on Signal Processing,1995,43(6): 1 536~1 540 被引量:1
  • 8[8]Callerts.Singular value decomposition in digital signal processing.Journal A,1991,32(2): 11~16 被引量:1
  • 9[9]Kanjilal P P,Palit Sarbani.The singular value decomposition-applied in the modelling and prediction of quasiperiodic processes.Signal Processing,1994,35(3): 257~267 被引量:1
  • 10[10]Palit Sarbani,Kanjilal P P.On the singular value decomposition,applied in the analysis and prediction of almost periodic signals.Signal Processing,1994,40(3): 269~285 被引量:1

共引文献147

同被引文献337

引证文献35

二级引证文献393

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部